
CSC/CYEN 131

The Science of Computing II

Living with Cyber

Student Edition

�

CSC/CYEN 131: The Science of Computing II

Living with Cyber (part 2 of 3)

Course Description: Intermediate algorithm analysis and development, object-oriented

programming, high-level data structures, computer architecture, and

problem solving. This is the second Living with Cyber course.

Course Outcomes: Upon successful completion of this course, students should:

1.Be able to identify a problem’s variables, constraints, and objectives;

2.Be able to write object- and non-object-oriented programs in a

general-purpose programming language (e.g., Python);

3.Be able to transform numbers from base two to bases ten and sixteen

– and vice versa;

4.Understand binary addition and multiplication;

5.Have exposure to some applications of computing (e.g., graphical

user interfaces);

6.Have a basic understanding of randomness, probability, and pseudo-

random number generators;

7.Have a basic understanding of recursion and breaking problems

down; and

8.Have a basic understanding of high level data structures (e.g., linked

lists, stacks, queues, binary trees).

Prerequisite(s): A grade of C or better in CSC 130 or CYEN 130.

Textbook: The Living with Cyber text (in PDF format) is available for free online at

www.livingwithcyber.com.

Grades: Your grade for this class will be determined by dividing your total earned

points by the total points possible. In general, graded components will

fall into the following categories:

Attendance: ~2.5%

Puzzles: ~2.5%

Raspberry Pi activities: ~27.5%

Programs: ~17.5%

Major tests: ~50%

�

The Raspberry Pi kit that will be used throughout the Living with Cyber curriculum in the 2017-

18 academic year will be provided to participating students at no cost. Students who drop

the Living with Cyber curriculum before inishing it must return the kit. Students not majoring or

minoring in Computer Science, or majoring Cyber Engineering, will be loaned the kit and must

return it at the completion of the Living with Cyber curriculum. Please see

www.livingwithcyber.com for more information about device requirements.

Students needing testing or classroom accommodations based on a disability are encouraged

to discuss those needs with me as soon as possible. For more information, please visit

www.latech.edu/ods.

If you are ill, you can get treatment at the Wellness Center in the Lambright Intramural Center

building. The nurses there can treat minor illnesses and can give vouchers to see doctors in

town for more serious illnesses. Since you have already paid for this service through your fees,

there is usually no additional charge. Also, if you sign a HIPPA release form at the time of your

visit, they can verify that you were ill and thus you will have an excused absence for missing

class.

In accordance with the Academic Honor Code, students pledge the following: “Being a

student of higher standards, I pledge to embody the principles of academic integrity.” For the

Academic Honor Code, please visit http://www.latech.edu/documents/honor-code.pdf.

All Louisiana Tech students are strongly encouraged to enroll and update their contact

information in the Emergency Notiication System. It takes just a few seconds to ensure you’re

able to receive important text and voice alerts in the event of a campus emergency. For more

information on the Emergency Notiication System, please visit http://ert.latech.edu.

TOPICS COVERED:

• More Python

• The Object-Oriented (OO) Paradigm

• Number Systems and Binary Arithmetic

• Application (Beam): Graphical User Interfaces

• Chaos

• Recursion

• High Level Data Structures

�

The Science of Computing II Living with Cyber

Lesson Summary

Title Pillar(s) Description/Topic(s) Periods

01 More Python Computer
Programming

1. What you should already know
2. A review of program flow
3. Formal vs. actual parameters
4. Variable scope
5. A review of the Python list
6. Revisiting searching and sorting in Python
7. Exiting repetition constructs early
8. Other operators
9. String methods
10. Importing external libraries and designing

modules

3

02 The Object-
Oriented Paradigm

Computer
Programming

1. Introduction to the object-oriented paradigm
2. State and behavior
3. Objects, classes, and instances
4. Class definitions
5. Object references
6. Instance variables vs. and class variables
7. Accessors and mutators
8. Range checking and input validation
9. Operator overloading
10. Class diagrams
11. Inheritance

6

04 Number Systems
and Binary
Arithmetic

Computer
Architecture

1. The binary number system
2. The hexadecimal number system
3. Number system conversion
4. Binary arithmetic (addition and

multiplication)
5. Binary addition (including half adders, full

adders, and chaining full adders)
6. Bitwise operators in Python

3

05 Graphical User
Interfaces

Beam
(Application #1)

1. GUI components
2. Events
3. The Python Tkinter library
4. Common GUI widgets
5. Configuring and positioning widgets
1. Various GUI examples

1

06 Chaos Algorithms 1. The coordinate system
2. The Chaos Game
3. Fractals, randomness, and probability
4. Random number generators

2

07 Recursion Algorithms 1. The Towers of Hanoi 2

Gourd Last modified: 17 Nov 2017

�

2. Breaking problems down
3. Recurrence relations
4. Recursion
5. Famous recursive algorithms (e.g., factorial,

Fibonacci)
6. The Towers of Hanoi...reloaded

08 High Level Data
Structures

Data Structures 1. A review of arrays
2. Linked lists
3. Stacks
4. Queues
5. Binary trees

2

Pi Activities 5

Exams 3

Housekeeping 1

Slack 2

TOTAL 30

Gourd Last modified: 17 Nov 2017

�

CSC/CYEN 131: The Science of Computing II

Last updated:
Lessons Raspberry Pi Activities Puzzles Videos Assessments

13 Mar 2018

W
E

E
K

 1

1

Housekeeping Ira Glass on Storytelling W

2

More Python

F

3

M

W
E

E
K

 2

4

W

5

The Object Oriented Paradigm

F

6

M

W
E

E
K

 3

7

W

8

Slomo F

9

M

W
E

E
K

 4

10

The Object Oriented Paradigm

W

11

F

12

M

W
E

E
K

 5

13

W

14

F

15

W

Alphabet Equation
--

How Many Zeros?

Program 1
How Many Zeros?

Program 2
Sort Comparisons and Swaps

Program 3
A Simple Vehicle Class

Oddball Sum
--

AB + BA = CDC

Pi Activity 1
Room Adventure

Program 4
Fraction Enhance

Exam 1
More Python

The Object Oriented Paradigm

Number Systems and Binary
Arithmetic

Mary's Siblings
--

Jar of Marbles

Kara
–

Detroit: Become Human

Program 5
A Simple Vehicle
Class...Reloaded

�

CSC/CYEN 131: The Science of Computing II

Last updated:
Lessons Raspberry Pi Activities Puzzles Videos Assessments

13 Mar 2018

W
E

E
K

 6

16

F

17

M

18

W

W
E

E
K

 7

19

Chaos

F

20

The Singularity M

21

W

W
E

E
K

 8

22

Recursion

F

23

M

24

High Level Data Structures

W

W
E

E
K

 9

25

F

26

F

27

M

W
E

E
K

 1
0

28

W

29

SLACK

F

30

M

Pi Activity 2
My Binary Addiction

Exam 2
Number Systems and Binary

Arithmetic

Beam
Graphical User Interfaces

Various Sequences
--

The Look and Say Sequence

Program 6
A Foolproof Game

Pi Activity 3
The Reckoner

Birthday of Three Sons
--

Three Switches and a Bulb

Program 7
Sort Comparisons and

Swaps...Reloaded

Exam 3
Chaos

Recursion
High Level Data Structures

Pi Activity 4
Simon

�

�

The Science of Computing II Living with Cyber

More Python Pillar: Computer Programming

What you should already know
In this lesson, we will build on what you have already learned about the Python programming language.
To be sure that we are all on the same page, let's briefly review the things about Python that you should
already be familiar with. For more detail, review the lesson on Introduction to Computer Programming.

Data types, constants, and variables
You should know that the kinds of values that can be expressed in a programming language are known
as its data types. The primitive types of a programming language are those data types that are built-in
(or standard) to the language and typically considered as basic building blocks (i.e., more complex types
can be created from these primitive types). Python's standard types can be grouped into several classes:
numeric types, sequences, sets, and mappings. You should be familiar with numeric types and
sequences (e.g., lists).

You should know that a constant is defined as a value of a particular type that does not change over
time. In Python both numbers and text may be expressed as constants. Numeric constants are
composed of the digits 0 through 9 and, optionally, a negative sign (for negative numbers), and a
decimal point (for floating point numbers). Text constants consists of a sequence of characters (also
known as a string of characters – or just a string).

You should know that a variable is defined to be a named object that can store a value of a particular
type. Before a variable can be used, its name must be declared.

Input and output
You should be familiar with obtaining input (via the input function) and generating output (via the

print statement) in Python. Here's a simple example:
name = input("What is your name? ")
print "Hello, {}!".format(name)

Operators
You should be familiar with a variety of operators in Python. Specifically, arithmetic operators,
relational (comparison) operators, and assignment operators. Arithmetic operators include addition,
subtraction, etc, and perform arithmetic operations on operands. Relational operators include
comparison of equality, inequality, less-than, and so on, and perform comparisons on operands and
return true or false. Assignment operators include operators such as +=, -=, and so on, and combine
assignment with arithmetic.

Primary control constructs
You should be very familiar with the three primary control constructs: sequence, selection, and
repetition. Sequence implies one statement after another. Selection allows blocks of optional statements
to be executed. Repetition provides a mechanism for repeating blocks of statements. There are two
main forms of repetition that we have covered: iteration and recursion. Iteration involves repeating a
task some fixed number of times, until a condition is reached, or over some structure (such as the items
in a list). Although recursion was only briefly covered, you should know that it involves breaking a
problem down repeatedly into smaller versions of itself until a base or trivial case is reached. We will
cover recursion in much more detail later in the curriculum.

Gourd, Kiremire, O'Neal 1 Last modified: 28 Feb 2018

�

Subprograms
You should be quite familiar with subprograms and how they can encapsulate behavior in programs.
They are organized, reusable, and related statements that perform some action. Specifically, some
subprograms perform tasks and terminate; others return a value. You should understand how control
flow is transferred to a subprogram when a subprogram is called, and how it is returned when the
subprogram terminates.

A review of program flow
Although you should be familiar with this already, it is so important that we should probably go over it
in detail again. It is very important to be able to identify the flow of control in any program, particularly
to understand what is going on. In fact, this significantly helps to debug problems in programs. Recall
that, in Python, function definitions aren't executed in the order that they are written in the source code.
Functions are only executed when they are called. This is perhaps best illustrated with an example that
you have seen before:

 1: def min(a, b):
 2: if (a < b):
 3: return a
 4: else:
 5: return b

 6: def max(a, b):
 7: if (a > b):
 8: return a
 9: else:
10: return b

11: num1 = input("Enter a number: ")
12: num2 = input("Enter another number: ")
13: print "The smaller is {}.".format(min(num1, num2))
14: print "The larger is {}.".format(max(num1, num2))

Each Python statement is numbered for reference. Lines 1 through 5 represent the definition of the
function min. This function returns the minimum of two values provided as parameters. Lines 6

through 10 represent the definition of the function max. This function returns the maximum of two

values provided as parameters. Lines 11 through 14 represent the main part of the program. Although
the Python interpreter does see lines 1 through 10, those lines are not actually executed until the
functions min and max are actually called. The first line of the program to actually be executed is line

11. In fact, here is the order of the statements executed in this program if num1 = 34 and num2 = 55:

11, 12, 13, 1, 2, 3, 14, 6, 7, 9, 10

Let's explain. Line 11 asks the user to provide some value for the first number (which is stored in the
variable num1). Line 12 asks the user to provide some value for the second number (which is stored in
the variable num2). Line 13 displays some text; however, part of the text must be obtained by first
calling the function min. This transfers control to line 1 (where min is defined). The two actual

parameters, num1 and num2, are then passed in and mapped to the formal parameters defined in min, a

and b. Then, line 2 is executed and performs a comparison of the two numbers. Since a = 34 and b =

Gourd, Kiremire, O'Neal 2 Last modified: 28 Feb 2018

��

55, then the condition in the if-statement is true. Therefore, line 3 is executed before control is
transferred back to the main program with the value of the smaller number returned (and then control
continues on to line 14). Note that lines 4 and 5 are never executed in this case!

Line 14 is then executed and displays some text. Again, part of the text must be obtained by first calling
the function max. This transfers control to line 6 (where max is defined). The variables a and b take on

the values 34 and 55 respectively. Line 7 is then executed, and the result of the comparison is false.
Therefore, line 8 is not executed. Control then goes to line 9, and then to line 10 which returns the
larger value. The program then ends.

What is the order of execution if num1 = 55 and num2 = 34?

In min, a > b (i.e., num1 > num2); therefore, the else (false) part is executed (i.e., line 3 is never

executed). Similarly, the true part of max is executed (i.e., lines 9 and 10 are never executed).

What if num1 = 100 and num2 = 100?

Since a == b (i.e., a is not greater than b, but a is also not less than b), the the else part of each function
is executed. That is, lines 3 and 8 are never executed.

Here's another example with a simple for loop:
1: for a in range(1, 4):
2: for b in range(1, 5):
3: print "{} * {} = {}".format(a, b, a * b)

This snippet of code displays a portion of a multiplication table. In fact, here's the output:
1 * 1 = 1
1 * 2 = 2
1 * 3 = 3
1 * 4 = 4
2 * 1 = 2
2 * 2 = 4
2 * 3 = 6
2 * 4 = 8
3 * 1 = 3
3 * 2 = 6
3 * 3 = 9
3 * 4 = 12

Here's the order of the statements executed. To make things a bit more clear, it is grouped and
highlighted:

1, 2, 3, 2, 3, 2, 3, 2, 3, 1, 2, 3, 2, 3, 2, 3, 2, 3, 1, 2, 3, 2, 3, 2, 3, 2, 3
| 1 * n | 2 * n | 3 * n |

Gourd, Kiremire, O'Neal 3 Last modified: 28 Feb 2018

��

The first portion (highlighted in red and labeled 1 * n) represents a single iteration of the outer for loop
and a full iteration of the inner for loop. It generates the following output:

1 * 1 = 1
1 * 2 = 2
1 * 3 = 3
1 * 4 = 4

Let's explain. Line 1 of the outer for loop generates the list [1, 2, 3]. It then iterates over the values in
the list with the variable a taking on each value, one at a time. Initially, a = 1. Line 2 represents the
inner for loop and generates the list [1, 2, 3, 4], and iterates over its values with the variable b taking on
each value, one at a time. Initially, b = 1. Line 3 then displays the first line of output: 1 * 1 = 1. This
makes sense because a and b are both 1.

So far, the order of statements executed is 1, 2, 3. Note that the inner for loop iterates its complete cycle
(i.e., through the entire generated list) for each iteration of the outer for loop. Therefore, the inner for
loop iterates through the list [1, 2, 3, 4] for each value in the outer for loop's list [1, 2, 3]. After line 3
(when a and b are both 1), the inner for loop then iterates to the next value in the list. Therefore, line 2
is executed again so that b = 2. Similarly, line 3 executes again, generating the output: 1 * 2 = 2. At this
point, the order of statements executed is 1, 2, 3, 2, 3.

The inner for loop continues iterating two more times (lines 2 and 3), setting b to 3 and then to 4. After
the first full iteration of the outer for loop, the order of statements executed is 1, 2, 3, 2, 3, 2, 3, 2, 3. So
when a = 1, b goes through the values 1, 2, 3, and 4. The output generated at this point is then:

1 * 1 = 1
1 * 2 = 2
1 * 3 = 3
1 * 4 = 4

Since the inner for loop has finished a full iteration, control goes back to line 1, thereby allowing the
outer for loop to iterate to the next value in the list so that a = 2. Line 2 is executed again, generating a
new list [1, 2, 3, 4] and setting b to 1. Similarly, line 3 is executed again, generating the output: 2 * 1 =
2. Lines 2 and 3 are executed as before, for each value in the inner loop's list [1, 2, 3, 4]. Of course,
this generates exactly the same order of statements as before: 1, 2, 3, 2, 3, 2, 3, 2, 3. However, this
represents the second iteration of the outer loop.

Since the inner for loop has finished another full iteration, control goes back to line 1, thereby allowing
the outer for loop to iterate to the next value in the list so that a = 3. Again, lines 2 and 3 are executed as
before, for each value in the inner loop's list [1, 2, 3, 4]. Clearly, this generates exactly the same order
of statements as before: 1, 2, 3, 2, 3, 2, 3, 2, 3. This time, it represents the third (and final) iteration of
the outer loop. Why? Because the outer for loop has iterated through the entire list [1, 2, 3]. After this
final iteration, the variable a has taken on all of these values. Therefore, the outer for loop is exited, and
the program terminates.

Again, knowing the order in which statements are executed is crucial to debugging programs and
ultimately to creating programs that work.

This concludes a review of what you should already know in Python. From here, we'll introduce new
content.

Gourd, Kiremire, O'Neal 4 Last modified: 28 Feb 2018

��

Formal vs actual parameters
You have seen that a function can have parameters. These parameters are formally stated when the
function is defined; for example:

def average(a, b):
return (a + b) / 2.0

Here, the variables a and b are formally defined as parameters that must be passed in to the function
average when it is called. In this context, the variables a and b are called formal parameters. It is

where they are defined (in a formal manner).

Now consider a point in the source code where this function is called; for example:
avg = average(11, 67)

Here, the result of a call to the function average with the supplied values (or parameters) 11 and 67 is

stored in the variable avg. These values, 11 and 67, are considered actual parameters in this context.
That is, they are the actual values that will be passed in as parameters to the function average. In fact,

they are mapped to the formally defined parameters (i.e., formal parameters) a and b in the function
average. That function will use these values to make calculations and return the average of the two.

The value returned replaces the function call. Think of this replacement as follows:
avg = average(11, 67)

39.0

Therefore, the variable avg is assigned the value 39.0 after the call to the function average is

complete. Consider this call to the same function:
x = 11
y = 67
avg = average(x, y)

Here, the result is still the same. The average of the two variables, x and y (with the values 11 and 67
respectively), is stored in the variable avg. Here, x and y are also actual parameters (even if they are
variables themselves) because they represent the actual values supplied to the function average.

Variable scope
Consider the following Python program snippet:

a = 10

def f(x):
a = 11
b = 21
x *= 2
print "in f(): a={}, b={}, x={}".format(a, b, x)

b = 20
f(b)
print "in main: a={}, b={}".format(a, b)

def g():
global a

Gourd, Kiremire, O'Neal 5 Last modified: 28 Feb 2018

��

a *= 1.5
print "in g(): a={}, b={}".format(a, b)

g()
print "in main: a={}, b={}".format(a, b)

The variables a and b (highlighted above) are considered global variables. That is, they are accessible
throughout the entire program because they are defined outside of any block context (e.g., a loop
construct, a function, etc). Global variables can be accessed anywhere. Their scope is global (i.e.,
throughout the entire program). Take a look at the output of the program above:

in f(): a=11, b=21, x=40
in main: a=10, b=20
in g(): a=15.0, b=20
in main: a=15.0, b=20

Let's explain the output. Initially, the variable a is assigned the value 10. The next segment of code
defines the function f. This is only a definition (i.e., the statements are not actually interpreted or

executed at this point). Then, the variable b is assigned the value 20. What follows is a call to the
function f, passing the variable b as an actual parameter. Control is then transferred to the function f,

whose statements are now executed. Note that, to the function f, the variable x is the formal parameter

that takes on the value passed in (from the variable b). So the variable x is now equal to the value of the
variable b (i.e., 20) that was passed in at the point of the call to f. Note that the variable x is local to the

function f; therefore, it is considered a local variable. That is, it is defined in f and only accessible in

f – its scope is valid only in the function f. Also note that, although a and b are global, there are local

versions declared in f. It is important to note that these are different variables than the global versions –

even if they have the same name!

So what happens in f? The local variable a is initialized with the value 11, the local variable b is

initialized with the value 21, and the local variable x (which is passed in as an argument with the value
20) is doubled to 40. The output of the function f is then clear:

in f(): a=11, b=21, x=40

Once f completes and control is transferred back to the point at which function f was called, the

variable x is no longer accessible! In fact, let's alter the print statement immediately after the call to f

from:
print "in main: a={}, b={}".format(a, b)

And change it to:
print "in main: a={}, b={}, x={}".format(a, b, x)

Here's the output of the program now:
in f(): a=11, b=21, x=40
Traceback (most recent call last):
 File "scope.py", line 11, in <module>
 print "in main: a={}, b={}, x={}".format(a, b, x)
NameError: name 'x' is not defined

Gourd, Kiremire, O'Neal 6 Last modified: 28 Feb 2018

��

Notice the error indicating that the variable x is not defined. That's because it was defined in f;

however, the current context is outside of f. The variable x is no longer available once f finishes and

control is transferred back to the main part of the program.

Let's replace the print statement to remove the error and explain the rest of the output from the original
execution of the program:

in main: a=10, b=20
in g(): a=15.0, b=20
in main: a=15.0, b=20

Once control is transferred back to the main part of the program, the local variables a and b (in f) no
longer exist. However, the global variables a and b do! They were initialized to 10 and 20 respectively.
Therefore, the next line of output makes sense:

in main: a=10, b=20

The next part of the program defines another function, g, that is then called. Note the global keyword in

the function g. This instructs Python to reference a globally defined version of the variable that follows

the global keyword. That is, a local version is not defined and/or initialized. Instead, the global version
is directly referenced. Moreover (and quite importantly), it permits the global version to be changed.
Although there are no arguments to the function g, the global variable a is directly modifiable through

the global keyword. When the statement a *= 1.5 is executed, the value of the global variable a is

10. This statement changes its value to 15.0, directly updating the variable's value – globally!

Note the print statement in g. It refers both to the variables a and b. A reference to the variable a makes

sense; however, the variable b is also accessible. In fact, the variable b is referencing the global version
of b, similar to the variable a (i.e., it is directly readable). The difference in using the global keyword is
that it permits a change to the variable; without it, it can only be utilized in a read-only manner. Since
the global variable b is initialized with the value 20, the output in g is clear:

in g(): a=15.0, b=20

When control is transferred back to the main part of the program, changes to global variable a persist
(even if they were changed in a function!):

in main: a=15.0, b=20

To illustrate this even more, let's slightly change the function g as follows:
def g():

global a
a *= 1.5
b = 40
print "in g(): a={}, b={}".format(a, b)

Note the slight difference: b is declared and initialized with the value 40. Which b is this? Is it a local
version (i.e., local to g)? Or is it referring to the global version declared in the main part of the

program? Recall that, without the global keyword, a global variable can not be modified. Therefore, an
assignment statement in a function to a variable that has the same name as a global variable indicates
that the variable is a new instance, defined locally in the function. This is a different variable b! The
output in g is clear:

in g(): a=15.0, b=40

Gourd, Kiremire, O'Neal 7 Last modified: 28 Feb 2018

��

When control is transferred back to the main part of the program, the local version of b disappears. All
that's left is the global version (that remains unchanged at 20). Therefore, the output in the main part of
the program is also clear:

in main: a=15.0, b=20

A review of the Python list
Although you should be familiar with Python lists, they are quite important and used often; therefore, we
will go over it again. Generally, a Python sequence is composed of (typically related) elements. Each
element in a sequence is assigned an index (or position). A sequence with n elements has indexes 0 to
n–1. Python has many built-in types of sequences; however, the most popular is called the list.

The list in Python is quite versatile. Recall that a list is declared using square brackets; for example:
grades = [94, 78, 100, 86]

The statement above declares the list grades with four integers: 94, 78, 100, and 86. The list can be

displayed in its entirety (e.g., with the statement print grades); however, we can access each

element individually by its index (specified within brackets). Accessing can mean to read a value in the
list, or it can mean to change a value in the list; for example:

print grades[0]
grades[3] = 87
grades[1] += 2

Recall that more than one value in a list can be accessed at a time. We can specify a range (or interval)
of indexes in the format [lower:upper+1] which means the interval [lower, upper) (i.e., closed at

lower and open at upper). That is, the lower index in the range is inclusive but the upper is not. For
example:

stuff[3:4] # accesses index 3 (the same as stuff[3])
stuff[0:5] # accesses indexes 0 through 4
stuff[-3] # accesses the third index from the right

Also recall that list elements can be deleted with the del keyword as follows:
del stuff[2]

Finally, recall that Python provides several built-in operations that can be performed on lists. Here are
many of them:

len(list) Returns the length of a list

max(list) Returns the item in the list with the maximum value

min(list) Returns the item in the list with the minimum value

list.append(item) Inserts item at the end of the list

list.count(item) Returns the number of times an item appears in the list

list.index(item) Returns the index of the first occurrence of item

list.insert(index, item) Inserts an item at the specified index in the list

list.remove(item) Removes the first occurrence of item from the list

Gourd, Kiremire, O'Neal 8 Last modified: 28 Feb 2018

��

list.reverse() Reverses the items in the list

list.sort() Sorts a list

Revisiting searching and sorting in Python
In previous lessons, we designed several searching algorithms (sequential/linear search and binary
search) and sorting algorithms (bubble sort, selection sort, and insertion sort). We first specified them in
pseudocode, and for some we showed how they could be implemented in Python (sequential search,
binary search, and selection sort). To help get a better understanding of Python, let's briefly revisit some
of these.

First, here's the sequential search for the smallest value in a list (from an earlier lesson). Note that a
Python list is first populated with 20 random integers (from 1 to 99, also from an earlier lesson):

 1: from random import randint

 2: numbers = []
 3: while (len(numbers) < 20):
 4: numbers.append(randint(1, 99))

 5: print numbers

 6: minIndex = 0

 7: for index in range(1, len(numbers)):
 8: if (numbers[index] < numbers[minIndex]):
 9: minIndex = index

10: print "The smallest value is at index: {}".format(minIndex)
11: print "The smallest value is: {}".format(numbers[minIndex])

This version of the sequential search technically returns the index of the smallest value (which is
typically what programmers are interested in). Since the value can be easily accessed through the index,
returning the index is much more meaningful. To generalize the sequential search so that it can return
the index of a specified value (as opposed to the smallest value), it can be modified by replacing lines 6
through 11 as follows:

num = input("What integer would you like to search for? ")

for index in range(len(numbers)):
if (numbers[index] == num):

print "The value {} was found at index {}!".format(num, index)

What happens if the specified value is duplicated several times in the list? Clearly, each index would be
displayed. Here's example (with user input highlighted in red):

[20, 47, 80, 52, 98, 80, 1, 14, 31, 48, 70, 31, 97, 30, 31, 43, 59, 2, 38, 50]

What integer would you like to search for? 31
The value 31 was found at index 8!
The value 31 was found at index 11!
The value 31 was found at index 14!

Gourd, Kiremire, O'Neal 9 Last modified: 28 Feb 2018

��

But what if it's only necessary to find the first occurrence of a specified value (and then abort)? Python
provides a way to exit a repetition construct early through the break keyword! Formally, the break

keyword exits the nearest enclosing repetition construct. More on this in a bit. To illustrate the use of
the break keyword, the sequential search code above can be modified to return only the first instance of
a specified value:

for index in range(len(numbers)):
if (numbers[index] == num):

print "The value {} was found at index {}!".format(num, index)

break

Here's an example:
[87, 44, 37, 69, 92, 74, 49, 97, 65, 69, 27, 61, 22, 77, 3, 3, 25, 86, 53, 45]

What integer would you like to search for? 3
The value 3 was found at index 14!

Note that the value 3 occurs twice in the list (at index 14 and index 15); however, only the first instance
is reported to the user before the search terminates. The break statement exits the enclosing repetition
construct: in this case, the for loop.

What if the break keyword is located in a repetition construct that is also located inside of another
repetition construct? In this case, it will exit the inner repetition construct only. Here's an example:

for i in range(2):
print "i={}".format(i),
for j in range(5):

print "j={}".format(j),
if (j > 1):

break

print

Here's the output:
i=0 j=0 j=1 j=2
i=1 j=0 j=1 j=2

The outer for loops iterates i from 0 through 1. The inner for loop iterates j from 0 through 4.
Moreover, the inner for loop exits early if j is greater than 1. Technically, the print statement in the inner
for loop will display values of j that are less than or equal to 1. So why is a value of 2 for j displayed?
When j is 2, the value is displayed, after which the if statement is executed (which breaks out of the
inner for loop). The outer for loop continues (the lone print statement is there to add a line break in
between increasing values of i), and i becomes 1. This occurs again until the outer for loop terminates
(when i is 2).

Let's now take a look at the binary search that was also covered in an earlier lesson. Recall that it is a
very efficient search that requires a list to be sorted. Here's the Python code that was developed in an
earlier lesson:

num = input("What integer would you like to search for? ")
found = False
first = 0
last = len(numbers) - 1

Gourd, Kiremire, O'Neal 10 Last modified: 28 Feb 2018

��

while (first <= last and found != True):
mid = (first + last) // 2
if (num == numbers[mid]):

found = True
elif (num > numbers[mid]):

first = mid + 1
else:

last = mid - 1

if (found):
print "{} was found at index {}!".format(num, mid)

else:
print "{} was not found.".format(num)

This version of the binary search keeps tracks of two boundaries (first and last) that identify the
beginning and end indexes of the current portion of the list. Initially, first is 0 and last is n-1 (i.e., the
entire list). If the middle value of the current portion of the list does not match the specified value, the
appropriate half of the list is “discarded” by modifying either first (to discard the left half) or last (to
discard the right half).

Recall that the binary search required a list to be sorted, thereby taking advantage of the algorithm's
efficiency improvement over the sequential search. Here's the selection sort that was developed in an
earlier lesson:

n = len(numbers)

for i in range(0, n-1):
minPosition = i

for j in range(i+1, n):
if (numbers[j] < numbers[minPosition]):

minPosition = j

temp = numbers[i]
numbers[i] = numbers[minPosition]
numbers[minPosition] = temp

Recall how the selection sort works: (1) the list is sorted from left to right; (2) at each pass (controlled
by the outer for loop), the smallest value is swapped with the first item in the unsorted portion of the list;
and (3) the inner for loop performs the comparison of every remaining item in the unsorted portion of
the list to find the smallest value. For a review, see the lesson on Searching and Sorting.

There were two other sorting algorithms that were covered in earlier lessons: bubble sort and insertion
sort. We never developed Python code for them. Let's do this now. First, the bubble sort. Here is a
version in pseudocode:

for i ← 1..list length-1
for j ← 1..list length-i

if item j of list < item j-1 of list
then

Gourd, Kiremire, O'Neal 11 Last modified: 28 Feb 2018

��

temp ← item j of list
item j of list ← item j-1 of list
item j-1 of list ← temp

end

next

next

You may not have seen a for loop described in pseudocode before; however, this is a common way to
accomplish this repetition construct in pseudocode. So what's happening here? The basic idea is that a
value in the list will be compared to the one before it. If they are out of order, then they are swapped.
This continues, one index over (to the right), until the end of the list is reached. After the first pass, the
largest value is guaranteed to be in its final position (i.e., at the end of the list). The next pass starts
again at the beginning of the list; however, this time comparisons and swaps only take place until the
second-to-last value in the list (because the last value has already been placed there during the last pass).
Each time, the sorted list grows from right-to-left until the entire list is sorted.

The outer for loop controls the number of passes, while also providing a way to reduce the size of the
unsorted portion of the list after each pass. It iterates from 1 through n-1. The inner loop controls the
comparisons and swaps. Initially, the inner loop begins at 1 (the index of the second value in the list),
and compares this value to the one before it (the first value in the list). If they are out of order, they are
swapped. The swap works by using a variable (temp) that temporarily takes on one of the values in the
list. This continues with the next index (i.e., 2), and so on. The last index compared is n-i. If the
algorithms is in the first pass (i.e., i is 1) and the length of the list is 10, the last valid index in the list is
10 – 1 = 9.

Let's take a look at what a Python version of the bubble sort looks like:
n = len(list)

for i in range(1, n):
for j in range(1, n-i+1):

if (list[j] < list[j-1]):
temp = list[j]
list[j] = list[j-1]
list[j-1] = temp

Recall that Python's range function uses the first parameter as a lower bound and the second parameter
as one above the upper bound. That is, it operates on the interval [a, b), where a is the (closed) lower
bound and b is the (open) upper bound. Therefore, the upper bound of the outer loop is n: it iterates
from 1 through (and including) n-1 as intended. Similarly, the upper bound of the inner loop is n-i+1: it
iterates from 1 through (and including) n-i as intended. In the inner loop, if any value at an index is less
than the value of the one before it, they are swapped.

Next, let's take a look at the Python code for the insertion sort. Recall that the insertion sort works
somewhat as you would arrange a hand of cards being dealt to you: a new card is inserted in its
appropriate position in the hand of cards dealt so far.

 1: i = 1

 2: while (i < n):

Gourd, Kiremire, O'Neal 12 Last modified: 28 Feb 2018

��

 3: if (list[i-1] > list[i]):
 4: temp = list[i]
 5: j = i – 1

 6: while (j >= 0 and list[j] > temp):
 7: list[j+1] = list[j]
 8: j -= 1

 9: list[j+1] = temp

10: i += 1

Here's an explanation of the code. Line 2 controls the number of passes through the list (n-1 total
passes). The variable i is initialized to 1 (the second index in the list) and iterates through (but not
including) n; therefore, through the last index in the list. So, starting with the second value in the list, it
looks to the left (of this current value). Line 3 checks if that value is greater, and if so, then it must
move it to the right. Line 4 temporarily stores the current item, and lines 5 and 6 then begin the process
of iterating from the previous element, continuing to the left. At any point, if a value to the left is greater
than the current item, it is shifted one index to the right. This continues either until (1) the beginning of
the list is reached; or (2) a value that is not greater is found. Ultimately, the current item is placed into
its proper position in the list. The outer loop then continues with the next value in the list (through the
last value in the list).

Note that there are many other ways that the searches and sorts shown could have been implemented in
Python. For example, the use of for loops in the selection sort could have been replaced with while
loops (or vice versa in the insertion sort).

Other operators
Python provides several more classes of operators than you are already familiar with. Recall that, so far,
you have been exposed to (and should be quite familiar with) arithmetic operators, relational
(comparison) operators, and assignment operators. In this lesson, we will cover several other classes of
operators: logical operators and membership operators.

The logical operators evaluate two operands and return the logical result (i.e., True or False). Think
back to the primitive logic gates (and, or, and not). It turns out that they can be effectively mapped to
conditions in if-statements. Logical operators operate on conditions (that use relational operators) and
provide the overall logical result. In the following table, assume that a = True and b = False:

Python Logical Operators and Examples

and logical and a and b is False

or logical or a or b is True

not logical not not a is False; not b is True

Note that this is equivalent to the primitive logic gates, where 0 is substituted for False and 1 for True.
Here is the truth table for the and gate shown in this manner:

Gourd, Kiremire, O'Neal 13 Last modified: 28 Feb 2018

��

A B A and B

False False False

False True False

True False False

True True True

The logical operators sometimes make more sense when they are used in the context of a condition (e.g.,
in an if statement). Suppose that a = 5 and b = 10. The following condition would evaluate to False:

if (a == 5 and b < 10):
...

Why? Clearly because, although a is equal to 5, b is not less than 10 (it's equal to 10). Therefore, the
and logical operator will return False if and only if both sides of the operator evaluate to True. In this
case, the left side does while the right side does not. However, the following condition would evaluate
to True:

if (a == 5 or b < 10):
...

The or logical operator will return True if either (or both) sides of the operator evaluate to True. Since a
is equal to 5, then the left side is True. In this case, the right side doesn't need to be evaluated (and, in
fact, it isn't – more on that below).

The logical operators do work when the inputs (i.e., a and b in the previous examples) aren't necessarily
equal to True and False. That is, they also work when they are numeric values. Take, for example, the
following statements:

1: a = 23
2: b = 13
3: print a and b
4: print a or b
5: print not a
6: print not b
7: a = 0
8: print not a

Here's the output (with lines numbers matching those of the print statements above):
3: 13
4: 23
5: False
6: False
8: True

The output of lines 3 and 4 can be a bit confusing. Why, for example, is a and b 13? Or why is a or b
23? This can be explained by the following table, where the variables a and b have numeric values (as
in the examples above):

Python Logical Operators and Examples

Gourd, Kiremire, O'Neal 14 Last modified: 28 Feb 2018

��

and logical and returns a if a is False, b otherwise

or logical or returns b if a is False, a otherwise

not logical not returns False if a is True, True otherwise

The output of lines 5, 6, and 8 makes sense when we realize that, in Python, 0 is False and any non-zero
value is True! When a is 23 and b is 13, a evaluates to True (since it is non-zero); therefore, not a
evaluates to False. This is the same with b. However, when a is 0, then it evaluates to False; therefore,
not a evaluates to True. Formally, in the context of Boolean expressions, the following values are
interpreted as false: False, None, numeric zero of all types, and empty strings and containers. All other
values are interpreted as true.

Did you know?

The and and or logical operators are short circuit operators. That is, to evaluate a True or False result,
the minimum number of inputs required to produce such an output is evaluated. For example, suppose
that a = False and b = True. The expression a and b is only True if both a and b are True. Since a is
False, then there is no need to evaluate (or test) the value of b. This would be useless and waste CPU
cycles. Similarly, if a = True and b = True, the evaluation of the expression a or b only requires
checking that a is True for the entire expression to evaluate to True (i.e., there is no need to evaluate/test
the value of b).

Membership operators test for some value's membership in a sequence (e.g., to test if an element exists
in a list, or if a character exists in a string). In the following table, suppose that the Python list numbers
= [1, 3, 5, 7, 9], x = 2, and y = 3.

Python Membership Operators and Examples

in Returns True if a specified value is in a
specified sequence or False otherwise

x in numbers is False; y
in numbers is True

not in Returns True if a specified value is not in a
specified sequence or False otherwise

x not in numbers is
True; y not in numbers
is False

You have seen this in previous for loop examples (e.g., for i in list). This for loop configuration

has the variable i take on each of the values in list, one at a time.

String methods
Strings are often necessary when writing programs. As such, Python provides a variety of methods that
work on strings. You have already seen one such method, format(), that formats a string as specified
(we did this earlier in one variant of the print statement). The following table lists some of the more
useful string methods:

Python String Methods/Functions

str.capitalize() capitalizes the first character of a string

str.find() returns the first index of a string within another string

Gourd, Kiremire, O'Neal 15 Last modified: 28 Feb 2018

��

str.format() formats a string according to a specification

str.isdigit() determines if a string consists only of numeric characters

str.lower() converts a string to lowercase

str.replace() replaces all occurrences of a string (within a string) with another string

str.split() returns a list of the words in a string

str.upper() converts a string to uppercase

These string methods are explained in greater detail in a variety of online sources. We suggest that you
Google them and try them out. However, here are a few examples in IDLE:

Note the execution of the string method str.find() above: s.find("going"). This string method

returns the first index of the string, “going”, within the string, s. Why is the result 17? At first glance, it
seems that the first character of the string, “going”, is at position 18. However, strings are sequences
(just like lists); therefore, the characters of a string in Python begin at index 0.

Importing external libraries
It is often useful (and necessary) to import external functionality into our programs. In fact, you've seen
(and used) this before (in the lesson Introduction to Data Structures), although it may not have been
explained in detail. Often, others have designed functions and other bits of code that may prove useful.
We don't always want to recreate things that already exist. Python supports the importing of such things
via the import reserved word. For example, many of the programs we create require the use of
mathematical functions beyond simple arithmetic (e.g., sin, cos, tan) or mathematical constants (e.g., pi,
e). The structure of an import statement is as follows:

Gourd, Kiremire, O'Neal 16 Last modified: 28 Feb 2018

��

import library

Pretty simple. Here's an example of the importing and use of the math library:

Note in the example, the invalid use of pi before importing that math library. In addition, any value or
function used in a library must be fully qualified with the name of the library (e.g., we need to specify
math.pi and not just pi). Alternatively, we can itemize what we wish to import from a library. This
allows us to use values and functions directly without having to specify the library name. The structure
of such an import statement is as follows:

from library import function (or constant)

For example, the constant PI and the sin() function can be formally imported as follows:
from math import pi, sin

Moreover, these can be directly used as follows:
print pi
print sin(pi)

Here's the output:
3.141592653589793
1.2246467991473532e-16

Formally, Python calls its libraries modules. And we can even write our own modules! They are just
Python programs that typically provide definitions of constants and functions that other Python
programs import and make use of. Python modules just need to be saved as a .py file and located in the

Gourd, Kiremire, O'Neal 17 Last modified: 28 Feb 2018

��

same folder/directory as a Python program that needs to make use of it. For example, we could include
several useful functions in a file called MyGoodies.py. Suppose that it contained the following:

from time import time

starts a timer
def start_time():

global start

start = time()

stops the timer and returns the time elapsed
def stop_time():

stop = time()
elapsed = stop - start

return elapsed

The purpose of this example module is to use it to time how long algorithms take to execute. It's quite
simple. The function start_time effectively starts a timer (through the time library's time function) by
capturing the current “time” – which is essentially the number of seconds elapsed since an epoch defined
in your operating system. For Unix and Unix-like operating systems (e.g., the “flavor” of Linux used on
the Raspberry Pi), the epoch is 1970-01-01 00:00:00. The function stop_time captures the current time
again (this time, after the algorithm has finished), and calculates and returns the difference between the
two.

We can make use of this module as follows:
from MyGoodies import start_time, stop_time

start a timer
start_time()

do something that takes a little time
for i in range(100000000):

pass

stop the timer
duration = stop_time()

display how long it took
print "Algorithm took {} seconds.".format(duration)

Note that the “algorithm” in the test code above really does nothing. It's just there to take up some
noticeable amount of time so that the module can be tested. Here's a sample run:

jgourd@pi:~$ python MyGoodiesTest.py
Algorithm took 5.71634602547 seconds.

Gourd, Kiremire, O'Neal 18 Last modified: 28 Feb 2018

��

The Science of Computing II Living with Cyber

The Object-Oriented (OO) Paradigm Pillar: Computer Programming

As discussed in lessons early in the curriculum, three paradigms of programming languages have
emerged over the years: the imperative paradigm, the functional paradigm, and the logical paradigm. A
language is classified as belonging to a particular paradigm based on the programming features it
supports. In addition, during the past decade or so these paradigms have been extended to include
object-oriented features. Some computer scientists view object-oriented programming as a fourth
paradigm. Others prefer to view it as an extension to the imperative, functional, and logical paradigms,
in that object-oriented constructs and behaviors are often viewed as higher-level organizational attributes
that can be incorporated into each of the three basic paradigms, rather than as a separate programming
paradigm unto itself.

Object-oriented concepts have revolutionized programming languages. The vast majority of widely
used programming languages are now object-oriented. In fact, they are, by far, the most popular type of
programming languages. Python, Java, and C++ are object-oriented, imperative languages.
Specifically, Python is an imperative, interpreted language that can optionally be object-oriented. That
is, non-object-oriented programs can be written in Python if desired. In a sense, this makes Python quite
powerful (like a Swiss army knife of programming).

The object-oriented paradigm is an elegant and clean way to conceptually think about computer
programming. When used properly, it can produce programs that are more robust, less likely to have
errors, and are easy for others to understand and modify. Specifically, the object-oriented approach adds
the concepts of objects and messages to the paradigms listed above. We don't think of programs as
procedures or lists of instructions to be executed in order from beginning to end; rather, we think of
them as modeling a collection of objects interacting with each other.

Essentially, programs and the data on which they act are viewed as objects. In order to perform a task,
an object must receive a message indicating that work needs to be done. Object-oriented languages are
extremely useful for writing complex programs; for example, programs that support mouse-based,
graphical user interfaces. Object-oriented programming helps in the construction of software systems by
enabling large, complex systems to be subdivided into isolated functional units with well-defined
external interfaces to other system components. There are many other distinguishing characteristics of
object-oriented programs, including inheritance, polymorphism, and data encapsulation. Some of these
will be discussed in this lesson, while others will be covered in later lessons.

State and behavior...the basic idea
We live in a world in which objects exist all around us. In fact, we interact with objects all the time. For
example, the author of this document interacted with a keyboard and mouse while writing this sentence!
The author's brain (an object) somehow sent a message to hands and fingers (all objects) to make contact
with keyboard keys (again, all objects). The keyboard (an object) somehow sent a message to the
computer (an object made up of many other objects) to interpret key presses as characters to be placed in
this document (an object) and displayed on the screen (yet another object).

Fundamentally, an object is a thing. In object-oriented programming, the objects model things in our
problem domain. Objects have properties (or attributes) that, in a sense, define them. They capture the
properties or characteristics of an object. For example, a person object has many attributes, some of

Gourd, Kiremire, O'Neal, Blackman 1 Last modified: 28 Feb 2018

��

which include sex, name, age, height, hair color, eye color, and so on. These are the things that a person
can be. The collection of attributes that make up an object are called its state.

Objects can also do things. That is, they can have behaviors. In object-oriented programming, these
behaviors are implemented by program modules (e.g., methods, procedures, functions, etc) that contain
the instructions required to model the behavior in computer software. For example, a person object can
eat, sleep, talk, walk, and so on. The collection of actions that an object can do are called its behavior.

Collectively, state and behavior define an object. When you begin to adopt this way of thinking, you can
begin to see many things in our world as objects with attributes and behaviors interacting with other
objects.

Objects, classes, and instances
An object represents a specific thing from the real world with defined attributes. For example, “the
white truck down there parked by the road” is an object. It is a truck that could ostensibly be observed
on the road. In fact, it could be a white 2016 4x4 Dodge Ram 1500 with 450 miles on it.

Clearly, there exist other trucks in the world. In fact, there may even be other trucks parked by the road
next to the one just described. One could say, then, that the generic term truck could represent all kinds
of truck objects. Trucks are all basically different versions of the same thing. That is, they all behave
the same and have the same set of attributes; however, the values of those attributes is what sets them
apart. For example, one truck could be red and another white; one truck could be a Dodge and another a
Toyota.

A class represents a blueprint or template for those real world things with defined attributes (i.e., for all
of the objects that can be derived). For example, a truck class could be used to create many truck
objects. Another way of saying this is that a class is a collection of objects that share the same attributes
and behaviors. The differences between individual objects are abstracted away and ignored. So the
class can be thought of as the perfect idea of something. This occurs in the real world in, for example,
the way a child learns to abstract away the differences between Aunt Jamie's schnauzer, a best friend's
bulldog, and dad's boxer – and learns to classify them all as dogs.

This is not a new idea. Plato, quoting Socrates in The Republic, discusses the Theory of Forms or Ideas.
For example, no one has ever seen a perfect circle; however, we have an idea of what a perfect circle
should be. We have drawn many circles, but none of them were absolutely perfect. The perfect idea of
a circle would be considered a class, and each of the circles we draw would be considered objects.

Formally, a class defines the state and behavior of a class of objects. The fact that a truck has a color,
year, make, model, mileage, and so on, is defined in the class. The fact that a truck can haul, drive, turn,
honk, and so on, is also defined in the class. In fact, how a truck hauls, drives, turns, and honks is
specified in the truck class as well. From the truck class, many truck instances can be created, each
with potentially different attribute values making up each truck's unique state. We say that, from this
class, we can instantiate many objects. Usually, we use the term object and instance interchangeably.
That is, a truck object, for example, is just an instance of the truck class.

Activity 1: The zoo

Gourd, Kiremire, O'Neal, Blackman 2 Last modified: 28 Feb 2018

��

In this activity, you will play a game using an animal class. This class, formally called Animal, will
define what animals can be and do. Some of the students in the class will become objects of the class
Animal. The animal class defines several attributes that an animal has:

type: a string that represents the animal's type (e.g., dog)

appetite: an integer that represents how much daily food units the animal requires to live

stomach: an integer that represents how much food units are currently in the animal's stomach

alive: a Boolean that represents whether or not the animal is alive

sound: a sound that represents the sound the animal makes

The class also defines several behaviors that an animal can do (and that students will perform when
called upon):

talk(): make the sound the animal makes

burn(): use the animal's daily food units by subtracting appetite from stomach

eat(amount): increase the animal's stomach food units by the provided amount

getType(): tell the requester what the animal's type is (i.e., the value of type)

isAlive(): tell the requester if the animal is alive or not (i.e., the value of alive)

Note that if stomach is less than 0, then alive becomes false – and the animal dies...

Representing state and behavior
Objects store their state in instance variables. For example, a truck class could define the variable
year to represent the year a truck was manufactured. A specific truck object (or instance) would set

this variable to the year of its manufacture. In Python, this would be done with a simple assignment
statement. If, for example, the truck object were manufactured in 2016, then the statement year =

2016 would appropriately set the truck's year of manufacture. Another truck object could have a

different year of manufacture. Ultimately, the class defines instance variables; however, each object
stores its own unique set of values.

There are certain attributes that all instances of a class may want to share. Consider a class that defines
a person. Although each instance/object of the person class can be different and thus have unique values
stored in its instance variables (e.g., different sex, name, age, etc), all persons are Homo sapiens. All
persons share this scientific name. In fact, if an expert in the field were to rename (or perhaps refine) the
term Homo sapiens to something else, this would change for all persons, effectively at the same time.
This kind of behavior can also be replicated in the object-oriented paradigm.

A class variable defines a value that is shared among all the instances of a class. Unlike instance
variables that, when changed, only affect a single object, a change in a class variable affects all instances
of a class simultaneously. Essentially, a class variable is stored in memory that is shared among all the
instances of a class.

The behavior of objects is defined in methods (or functions) that can be invoked. For example, the turn
behavior of a truck could be defined in a function called turn. If necessary, this function could take

parameters as input and return some sort of output.

Ultimately, a class has source code that specifies its state (through instance variables) and behavior
(through methods). Collectively, state and behavior are referred to as the members of a class. Let's take

Gourd, Kiremire, O'Neal, Blackman 3 Last modified: 28 Feb 2018

��

a look at a simple example of a dog class in Python. For this example, a dog only has a name, and all
dogs are canines.

1: class Dog:
2: kind = "canine"

3: def __init__(self, dog_name):
4: self.name = dog_name

Line 1 represents the class header, which includes the Python keyword class and the name of the class

(in this case, Dog). Class headers are terminated with a colon, much like function headers. It is typical
to capitalize the names of classes. Moreover, class names should always be singular nouns since they
define the blueprint for a single thing.

Line 2 defines a class variable named kind that is initialized with the string “canine”. This value is

shared among all dogs. The reason that we consider kind to be a class variable is that it is defined

inside the class but outside any methods that are in the class. That is, class variables are defined at the
class level.

Lines 3 and 4 represent a function called __init__. In Python, functions that begin and end with two

underscores have special meaning. In fact, they are called magic functions. The __init__ function

provides an initialization procedure for each instance of the class. That is, the source code contained
within this method effectively defines what it means to initialize a new instance of the class. When we
want new instances of the dog class, this function is automatically invoked. Formally, this type of
function is called a constructor because it contains the source code required to construct a new instance
of the class. A constructor is automatically invoked each time we create an instance of a class. Its
purpose is to initialize an object, which typically means to set default values for one or more of the
instance variables.

In the dog class above, the constructor takes two parameters: self and dog_name. The first

parameter represents the instance that is about to be instantiated. This parameter is always required!
The second parameter represents the name of this new dog (e.g., Bosco). The function header indicates
that, to create a new instance of the dog class, a dog name must be provided. Line 4 then sets the
instance variable name for the object to be created. Note that self.name (on the left side of the

assignment statement) represents the instance variable (called name) for the dog class, and specifically

targets this dog instance's name (via self.name). The dot in between self and name is called the

dot operator and will be covered shortly. The variable dog_name (on the right side of the assignment

statement) is passed in to the function when a new instance of a dog is desired.

Instances of the dog class can be created as we need them. This typically occurs outside of the dog class
(for example, in a program that requires dog objects to interact with each other). Objects that are
instances of the dog class can be easily instantiated as follows:

5: d1 = Dog("Maya")
6: d2 = Dog("Biff")

Line 5 declares a variable, d1, that represents an instance of the dog class. Specifically, d1 is a dog

whose name is “Maya”. Line 6 defines a variable, d2, that represents another instance of the dog class.

Specifically, d2 is a dog whose name is “Biff”.

Gourd, Kiremire, O'Neal, Blackman 4 Last modified: 28 Feb 2018

��

When line 5 is executed, the variable d1 is mapped to the variable self in the __init__ function

(constructor) of the dog class. The variable self is a formal parameter. The variable d1 is the actual

parameter that is mapped to the formal parameter. Similarly, the string “Maya” (actual parameter) is
mapped to the variable dog_name (formal parameter). The statement self.name = dog_name

ultimately sets the instance variable name for this instance of the dog class to whatever was passed in as

the variable dog_name (i.e., Maya in this case).

Formally, the variable d1 is called an object reference. That is, it refers to an object (or instance) of the

dog class. The variable d2 is also an object reference of the dog class. We can access the members of a

class by using the dot operator. For example, we could change the name of d1 to Bosco as follows:
d1.name = "Bosco"

The above example shows how to modify an instance variable. Note that it only changes the name of
d1 and not d2 because the specified object reference is d1. Simply accessing (without changing) a

member of a class is just as easy; for example:
print d2.name

This statement would produce the output Biff (because d2's name is Biff). In fact, let's list the state of

each instance of the class dog, d1 and d2 (note that this is not Python source code; rather, it is an

enumeration of the instance variables and their associated values for the objects d1 and d2):

d1.name → Bosco

d2.name → Biff

d1.kind → canine

d2.kind → canine

You have actually seen (and used) the dot operator before. Consider the following statements:
name = "Joe"
welcome_string = "Hello, {}"
print welcome_string.format(name)

From these statements, we can infer that strings (specifically the string welcome_string in the

example above) are objects! In addition, the function format must be a member of the string class

since it can be accessed using the dot operator! In fact, the function format is part of the behavior of

the string class. This function takes one or more parameters that replace the empty braces in the string.

Did you know?

In Python, instance variables don't need to be formally declared in the class. That is, they can be
defined as needed, dynamically. For example, although the dog class doesn't yet specify an instance
variable that defines a dog's breed, the following statement in the main part of the program effectively
adds the instance variable breed to the dog class. Specifically, it sets d1's breed to German Shepherd:

d1.breed = "German Shepherd"

It is standard practice, however, to formally define all instance variables in the class. This will be
further discussed later.

Gourd, Kiremire, O'Neal, Blackman 5 Last modified: 28 Feb 2018

��

Instance variables vs. class variables
Suppose that an expert in the field decided to change the scientific name for dogs from canine to
something like “caten”. You know, to account for inflation1. Changing class variables separately for
each instance of the dog class doesn't make sense. The purpose of a class variable is that its value is
shared simultaneously among all of the instances of the class. The proper method of changing a class
variable so that it appropriately affects all of the instances is to use the class name as follows:

Dog.kind = "caten"

This statement simultaneously changes the class variable kind (to caten) for all instances of the dog

class. To illustrate this, here is some source code for a dog class that illustrates the behavior and
differences of class and instance variables:

class Dog:
kind = "canine"

def __init__(self, dog_name):
self.name = dog_name

d1 = Dog("Maya")
d2 = Dog("Biff")

print "I have a dog named {} that is a {} and another named {}\
 that is also a {}.".format(d1.name, d1.kind, d2.name,\
 d2.kind)

d1.name = "Bosco"
print "I have a dog named {} that is a {} and another named {}\

 that is also a {}.".format(d1.name, d1.kind, d2.name,\
 d2.kind)

Dog.kind = "caten"
print "I have a dog named {} that is a {} and another named {}\

 that is also a {}.".format(d1.name, d1.kind, d2.name,\
 d2.kind)

d1.breed = "German Shepherd"
d2.breed = "mutt"
print "I have a dog named {} that is a {} and another named {}\

 that is a {}.".format(d1.name, d1.breed, d2.name,\
 d2.breed)

Did you know?

You may have noticed above that some statements seem to be spread across multiple lines. Each of the
lines that make up these statements end with a backslash (\), except for the last line of the statement.
Python allows the use of a backslash to note that the remainder of a statement is provided on the next
line. For example, take a look at the following statement:

1 See Victor Borge's Inflationary Language (Google it!) for the meaning behind this.

Gourd, Kiremire, O'Neal, Blackman 6 Last modified: 28 Feb 2018

��

a = 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 –
1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1

This statement can be spread across multiple lines as follows:
a = 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1\

 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1

Here is the output of the program:
I have a dog named Maya that is a canine and another named Biff
 that is also a canine.
I have a dog named Bosco that is a canine and another named Biff
 that is also a canine.
I have a dog named Bosco that is a caten and another named Biff
 that is also a caten.
I have a dog named Bosco that is a German Shepherd and another
 named Biff that is a mutt.

Note a few things: (1) the class variable kind is applied to both instances, d1 and d2; and (2) the

instance variable breed is dynamically created and applied (separately) to each instance.

Did you know?

For readability, Python source code is presented as it is formatted in IDLE throughout this lesson. the
main reason for this is that presenting source code this way provides syntax highlighting. Syntax
highlighting is the feature of highlighting (or coloring) certain portions of source code so that it helps
to categorize constructs, keywords, variables, and so on. It essentially helps to make the source code
more readable. For example, Python keywords are colored orange and strings are colored green.

It is important to understand the difference between instance variables and class variables. Although
they seem similar, they are actually quite different. Perhaps this is best illustrated with an example.
Consider the following modified dog class:

class Dog:
kind = "canine"
tricks = []

def __init__(self, dog_name):
self.name = dog_name

def add_trick(self, trick):
self.tricks.append(trick)

d1 = Dog("Maya")
d2 = Dog("Biff")
d1.add_trick("roll over")
d2.add_trick("play dead")

print "I have a dog named {} that can {}.".format(d1.name,\
 d1.tricks)

Gourd, Kiremire, O'Neal, Blackman 7 Last modified: 28 Feb 2018

��

print "I have a dog named {} that can {}.".format(d2.name,\
 d2.tricks)

The only difference in the class is the addition of the list tricks and the function add_trick. After

all, a dog can do tricks! Adding a trick to an instance of the dog class can be done by accessing the
add_trick function (using the dot operator) on an object reference of a dog instance and providing

the trick to add (as a string). As shown before, the dog instance is automatically passed in and mapped
to the formal parameter self in the function. The string that represents the trick to add is passed in and

mapped to the formal parameter trick. The function appends a new trick to the end of the list.

The expected behavior of the source code above may be that each instance of the dog class (i.e., d1 and

d2) can define their own set (or list) of tricks. In fact, we expect that Maya can “roll over” and that Biff

can “play dead”.

However, take a look at the output:
I have a dog named Maya that can ['roll over', 'play dead'].
I have a dog named Biff that can ['roll over', 'play dead'].

The fact that both dog objects can do the same tricks can be explained by noting that the list tricks is

defined at the class level and is therefore considered a class variable. As such, all instances of the dog
class share the list. A change to it (even through the function add_trick) affects all instances of the

dog class! To fix this and make the list of tricks an instance variable, we can define it in the __init__

method as follows:
class Dog:

kind = "canine"

def __init__(self, dog_name):
self.name = dog_name
self.tricks = []

def add_trick(self, trick):
self.tricks.append(trick)

d1 = Dog("Maya")
d2 = Dog("Biff")
d1.add_trick("roll over")
d2.add_trick("play dead")

print "I have a dog named {} that can {}.".format(d1.name,\
 d1.tricks)

print "I have a dog named {} that can {}.".format(d2.name,\
 d2.tricks)

Since it is no longer at the class level, it is considered an instance variable and thus allows unique values
to be stored for each instance of the dog class. Here is the output of the above modified Python code:

I have a dog named Maya that can ['roll over'].
I have a dog named Biff that can ['play dead'].

Gourd, Kiremire, O'Neal, Blackman 8 Last modified: 28 Feb 2018

��

Now, take a look at this more complete dog class:
class Dog:

kind = "canine"

def __init__(self, name, breed):
self.name = name
self.breed = breed
self.tricks = []
self.friends = []

def add_trick(self, trick):
self.tricks.append(trick)

d1 = Dog("Maya", "mutt")
d2 = Dog("Biff", "Black Lab")
d1.add_trick("roll over")
d2.add_trick("play dead")

print "I have a dog named {} that can {}.".format(d1.name,\
 d1.tricks)

print "I have a dog named {} that can {}.".format(d2.name,\
 d2.tricks)

d1.friends = ["Finca", "Shane"]
d2.friends = ["Sadie", "Bosco"]
print "{}'s friends are {}.".format(d1.name, d1.friends)
print "{}'s friends are {}.".format(d2.name, d2.friends)

Note the addition of several new instance variables: breed and friends. This class defines all dogs

to have a name, a breed, a list of tricks, and a list of friends.

Here is the program's output:
I have a dog named Maya that can ['roll over'].
I have a dog named Biff that can ['play dead'].
Maya's friends are ['Finca', 'Shane'].
Biff's friends are ['Sadie', 'Bosco'].

At this point, it may be worthwhile to summarize the difference between class variables, instance
variables, and function parameters. Class variables are relevant to an entire class. The values of class
variables are shared among all of the instances of a class. Think of a class variable as being stored in a
single memory location that all the instances of a class can refer to. Instance variables are also relevant
to an entire class. However, the values of instance variables are unique for each instance of a class.
That is, an instance variable is stored in a different memory location for each instance of a class.
Function parameters are relevant to a function and are only accessible inside the function. They are
short-lived and last until the function has finished its execution.

Accessors and mutators
Consider the following simple dog class:

Gourd, Kiremire, O'Neal, Blackman 9 Last modified: 28 Feb 2018

��

class Dog:
kind = "canine"

def __init__(self, name):
self.name = name
self.age = 0

d1 = Dog("Maya")
print "I have a dog named {} that is {} year(s)\

 old.".format(d1.name, d1.age)
d1.age = -5
print "I have a dog named {} that is {} year(s)\

 old.".format(d1.name, d1.age)

Now take a look at the output:
I have a dog named Maya that is 0 year(s) old.
I have a dog named Maya that is -5 year(s) old.

Everything seems to work fine; however, note that no dog can actually be -5 years old. This value is not
possible for a dog's age (at least not in the world that we live in). This illustrates an important point:
sometimes, we may want to check that the values supplied to function parameters are sensible. For
numeric types, we typically call this range checking. That is, we may need to ensure that a supplied
value falls within a valid range. For example, a valid range for a dog's age could be 0 to 292.

Range checking is a subset of a more general concept called input validation, which attempts to
validate input (whether it be from a user during program execution, from actual parameters passed in to
a function's formal parameters, etc). To ensure proper execution of a program that processes inputs, the
inputs must first be validated. In the example above, the input to a dog's age must first be validated
before the instance variable is assigned the value of the input.

To accomplish this, we can define a mutator (also known as a setter) that provides write access to an
instance variable defined in a class. A mutator is a method that wraps an instance variable for the
purpose of input validation (and often access control in some object-oriented programming languages).
The instance variable still exists; however, to change it, the mutator must be called instead. Once the
supplied input is validated, the instance variable is then changed with the provided value.

Here is a modified dog class with a mutator for the instance variable age:
class Dog:

kind = "canine"

def __init__(self, name):
self.name = name
self.age = 0

def setAge(self, age):
if (age >= 0 and age <= 29):

self.age = age

2 The oldest dog that ever lived was an Australian cattle dog named Bluey. He reached almost 29.5 years of age!

Gourd, Kiremire, O'Neal, Blackman 10 Last modified: 28 Feb 2018

��

d1 = Dog("Maya")
print "I have a dog named {} that is {} year(s)\

 old.".format(d1.name, d1.getAge())
d1.setAge(-5)
print "I have a dog named {} that is {} year(s)\

 old.".format(d1.name, d1.getAge())

Note that the mutator is called setAge. Typically, we specifically set the name of a mutator to the

word “set” followed by the name of the instance variable (initially capitalized). Since the mutator's
purpose is to change the value of an instance variable, then that value must be passed in as a function
parameter. The mutator then performs range checking. In the case of the dog class above, a value from
0 through 29 is valid (and would subsequently be assigned to the instance variable age). To change the

value of a dog's age, the mutator must be called.

Here is the output now:
I have a dog named Maya that is 0 year(s) old.
I have a dog named Maya that is 0 year(s) old.

Note that the attempt to change d1's age to -5 was not successful.

Using the function setAge as the mutator that enables modification of the instance variable age seems

a bit tedious. In a perfect world, changing d1's age (with input validation) would perhaps be done as

follows:
d1.age = 11

However, doing it this way would effectively bypass the mutator, setAge, and ignore input validation

(as seen in the earlier example). Python does provide a neat way to accomplish this, however. We often
call this kind of neat behavior syntactic sugar. Syntactic sugar just means that a programming language
provides a sensible (and often shorthand) way to accomplish a task that may, under the hood, be a bit
more convoluted.

Python provides direct support for wrapping instance variables with mutators that perform input
validation through a concept called a decorator. For now, a decorator is just a wrapper. It is something
that wraps something else. In this case, it is a mutator in the form of a function that wraps an instance
variable.

However, to properly explain how Python supports this, we must first discuss the concept of an accessor.
An accessor (also known as a getter) is a method that wraps an instance variable for the purpose of
providing read access (i.e., to allow us to read the the value of an instance variable). In Python, the
meaning behind this is lost because all of a class' instance variables are directly accessible. However, in
other object-oriented programming languages (such as Java, for example), we can enforce the privacy of
instance variables. That is, we can restrict them such that they can only be accessed through accessors
and mutators. Nevertheless, the only way that Python supports decorators as mutators is to additionally
provide decorators as accessors. It may be best to first show the source code that demonstrates this:

class Dog(object):
kind = "canine"

Gourd, Kiremire, O'Neal, Blackman 11 Last modified: 28 Feb 2018

��

def __init__(self, name):
self.name = name
self.age = 0

accessor
@property

def age(self):
return self._age

mutator
@age.setter

def age(self, age):
if (age >= 0 and age <= 29):

self._age = age

d1 = Dog("Maya")
print "I have a dog named {} that is {} year(s)\

 old.".format(d1.name, d1.age)
d1.age = -5
print "I have a dog named {} that is {} year(s)\

 old.".format(d1.name, d1.age)

Note a few changes. First, the class header has changed from class Dog: to class

Dog(object):. The actual meaning behind this will become clear later in this lesson when we

discuss the concept of inheritance. Second, there are seemingly erroneous statements beginning with
that “@” symbol (e.g., @property and @age.setter). In Python, these tags formally define

decorators. The tag @property defines a decorator (or wrapper) that serves as an accessor, and the tag

@age.setter defines a decorator (or wrapper) that serves as a mutator for a member called age.

Both the accessor and mutator are functions with the same name. In the case above, both are functions
called age. Semantically, they refer to a dog's age. Since the identifier age is now used to refer to the

accessor and mutator, the instance variable that these methods wrap must be renamed. In Python, it is
typical to begin instance variables with an underscore. For example, the instance variable that stores a
dog's age would be called _age.

Let's explain the accessor and mutator, one at a time. First, the accessor:
@property

def age(self):
return self._age

Here, the tag @property defines a decorator that will serve as an accessor for the instance variable

that represents a dog's age. The next statement defines the accessor itself. The function is called age

(and only takes a single parameter, the object). Since the sole purpose of an accessor is to provide read
access to an instance variable, then all that is required is to return its value (via the return keyword).

Since the identifier age is used as the function's name, then the instance variable has been renamed to

_age as noted earlier.

Gourd, Kiremire, O'Neal, Blackman 12 Last modified: 28 Feb 2018

��

Now, the mutator:
@age.setter

def age(self, age):
if (age >= 0 and age <= 29):

self._age = age

Here, the tag @age.setter defines a decorator that will serve as a mutator for the instance variable

that represents a dog's age. The next statement defines the mutator itself. The function is also called
age (and takes two parameters: the object and the value to change the instance variable to). Since the

purpose of a mutator is to provide write access to an instance variable with input validation, it
appropriately ensures that the provided value is within an acceptable range. If so, the instance variable
_age is changed to reflect the provided input value.

You may have noticed that the decorator for the mutator, @age.setter, contains the name of the

function, age. This must be adhered to when defining a decorator as a mutator. If, for instance, we

wished to provide a mutator for a dog's name, we could use the decorator tag @name.setter, call the

mutator function name, and use the instance variable _name.

Note the following statement in the constructor:
self.age = 0

Be careful! Here, self.age does not refer to an instance variable. It actually refers to the mutator.

This assignment statement effectively calls the mutator, passing in the value on the right-hand side (0) as
the second parameter of the mutator (age). That is, the value 0 is passed in to the mutator, which is

then validated in the mutator. Since it is within the acceptable range (0 through 29), then the instance
variable _age is set to 0.

It is important to note that the accessor must be defined before the mutator. Using the @property tag

defines the property by name (e.g., age) so that it can be used to subsequently define the mutator

(@age.setter).

To illustrate accessors and mutators a bit more, consider the following class that defines a 2D point (with
an x- and y-coordinate):

points must fall within the range (-10,-10) and (10,10)
class Point(object):

def __init__(self, x=0, y=0):
self.x = x
self.y = y

getter for x
@property

def x(self):
return self._x

setter for x
@x.setter

def x(self, value):

Gourd, Kiremire, O'Neal, Blackman 13 Last modified: 28 Feb 2018

��

if (value < -10):
self._x = -10

elif (value > 10):
self._x = 10

else:
self._x = value

getter for y
@property

def y(self):
return self._y

setter for y
@y.setter

def y(self, value):
if (value < -10):

self._y = -10
elif (value > 10):

self._y = 10
else:

self._y = value

p1 = Point()
p2 = Point(5, 5)
p3 = Point(-50, 50)

print "p1=({},{})".format(p1.x, p1.y)
print "p2=({},{})".format(p2.x, p2.y)
print "p3=({},{})".format(p3.x, p3.y)

Although the class for a 2D point is a bit more involved, it only contains two instance variables. The
first, _x, represents the position of the point in the x-direction. The second, _y, represents the position

of the point in the y-direction. Accessors and mutators for each are provided (via the methods called x

for the instance variable _x, and the methods called y for the instance variable _y). In addition, range

checking is performed for both the x- and y-components. Each component may not be less than -10 or
greater than 10. Here is the output of the program:

p1=(0,0)
p2=(5,5)
p3=(-10,10)

Notice that the input validation works (i.e., declaring the point p3 at -50,50 results in a point initialized

at -10,10).

Did you notice something odd in the constructor? Here it is for reference:
 def __init__(self, x=0, y=0):
 self.x = x
 self.y = y

Gourd, Kiremire, O'Neal, Blackman 14 Last modified: 28 Feb 2018

��

Take a look at the constructor's parameters: (self, x=0, y=0). You probably expected something

more like this: (self, x, y). In Python, we can provide default values for function parameters.

This works for any function (not just the constructor). This means that, should parameter values be
unspecified when the function is called, the default values will be used. In this example, a point's
default x- and y-values are 0 and 0 respectively. Therefore, a point at the origin could be instantiated as
follows:

p = Point()

Of course, such a point could also be instantiated as follows:
p = Point(0, 0)

The default values are only used if parameter values are not specified when the function is called. It is
important to note that a function can have a mix of both standard and default parameters. In fact, the
constructor is just like this (self is a standard parameter without a default value, while x and y have

default values). In Python, all parameters with default values must be specified after standard
parameters. This way, it is clear if values for default parameters are specified in a function call. For
example:

def foo(a, b, c, d=5, e=7, f=8):
pass

...

foo(1, 2, 3, 4)

In this case, the actual parameters 1, 2, 3, and 4 are mapped to the formal parameters a, b, c, and d.

The default values for the formal parameters e and f are used.

To wrap up this section, let's add line numbers to the point class above and trace the program's
execution:

 1: # points must fall within the range (-10,-10) and (10,10)
 2: class Point(object):
 3: def __init__(self, x=0, y=0):
 4: self.x = x
 5: self.y = y

 6: # getter for x
 7: @property

 8: def x(self):
 9: return self._x

10: # setter for x
11: @x.setter

12: def x(self, value):
13: if (value < -10):
14: self._x = -10
15: elif (value > 10):
16: self._x = 10
17: else:

Gourd, Kiremire, O'Neal, Blackman 15 Last modified: 28 Feb 2018

��

18: self._x = value

19: # getter for y
20: @property

21: def y(self):
22: return self._y

23: # setter for y
24: @y.setter

25: def y(self, value):
26: if (value < -10):
27: self._y = -10
28: elif (value > 10):
29: self._y = 10
30: else:
31: self._y = value

32: p1 = Point()
33: p2 = Point(5, 5)
34: p3 = Point(-50, 50)

35: print "p1=({},{})".format(p1.x, p1.y)
36: print "p2=({},{})".format(p2.x, p2.y)
37: print "p3=({},{})".format(p3.x, p3.y)

In the space below, trace the execution path of the program by listing the lines numbers:

Did you know?

Although some object-oriented languages actually prevent accessing instance variables that are
protected (or wrapped) with accessors and mutators, Python does not enforce this. For example, it is
possible to change the x-component or access the y-component of a point via statements such as:

p1._x = -22
print p1._y

Many Python programmers prefer to change the way they implement classes so that any value that
requires protection is not stored in instance variables. There are other mechanisms that will, in fact,
protect these values. However, this discussion is beyond the scope of this lesson.

Gourd, Kiremire, O'Neal, Blackman 16 Last modified: 28 Feb 2018

��

Activity 2: Fractions

In this activity, we will create a class that represents a fraction. The first step is to determine what
makes up a fraction (i.e., what it can be – its state). This task is pretty simple! Fractions have a
numerator and a denominator. We can create instance variables for these and also provide accessors and
mutators for each.

We may also want to provide the numeric representation of a fraction. For example, the fraction 1/2 has
the numeric representation 0.5. In Python, simply dividing the numerator by the denominator (i.e., 1/2)
won't produce the anticipated result because it will perform integer division. That is, the expression 1/2
will result in 0 (since 2 goes into 1 exactly 0 times). To produce a floating point result, we must convert
one of the two operands to a floating point value. In Python, we can do this as follows:

float(1) / 2

The expression float(1) converts the integer value 1 into the floating point value 1.0. Generally, the

expression float(x) converts the operand x into a floating point value. Formally, this conversion is

called a typecast, in that the operand's type is cast to a different type.

The expression float(1) / 2 produces the expected result (0.5). In fact, typecasting either operand

works – as shown in the example below:

There are other typecast operators that perform various type conversions. Here are a few of them:
int(x) – converts x to an integer

long(x) – converts x to a long integer

complex(x, y) – creates a complex number; x is the real part, y is the imaginary part

str(x) – converts x to a string

Lastly, we must not allow the denominator of a fraction to ever be 0 (since division by 0 is
mathematically illegal). Therefore, we will need to provide range checking (via if-statements, for
example), to ensure that such an assignment is prevented.

Gourd, Kiremire, O'Neal, Blackman 17 Last modified: 28 Feb 2018

��

Here's the beginning of the fraction class, along with a brief main program to test the class:
defines a fraction
class Fraction(object):

by default, a fraction is 0/1
def __init__(self, num = 0, den = 1):

self.num = num
make sure not to set the denominator to 0 if
specified
if (den == 0):

den = 1
self.den = den

getter for the numerator
@property

def num(self):
return self._num

setter for the numerator
@num.setter

def num(self, value):
self._num = value

getter for the denominator
@property

def den(self):
return self._den

setter for the denominator
@den.setter

def den(self, value):
ignore if the specified denominator is 0
if (value != 0):

self._den = value

returns a fraction's numeric representation
def getReal(self):

return float(self.num) / self.den

main program
f1 = Fraction()
f2 = Fraction(1, 2)
f3 = Fraction(0, 0)

print "{}/{} ({})".format(f1.num, f1.den, f1.getReal())
print "{}/{} ({})".format(f2.num, f2.den, f2.getReal())
print "{}/{} ({})".format(f3.num, f3.den, f3.getReal())

And here's the output:

Gourd, Kiremire, O'Neal, Blackman 18 Last modified: 28 Feb 2018

��

0/1 (0.0)
1/2 (0.5)
0/1 (0.0)

Note how the class prevents the third fraction from being initialized as 0/0 and, instead, changes it to
0/1.

Did you know?

There is a better way of displaying a fraction than what is shown in the example above. Note how we
earlier structured a print statement that built the string representation of a fraction:

print "{}/{} ({})".format(f1.num, f1.den, f1.getReal())

In Python, we can define a built-in magic function that is automatically called when we wish to display
an object. In fact, this built-in function is user-definable and is named using a similar format as the
constructor (i.e., the function begins and ends with two underscores). The function is called __str__

and must return a string representation of the class. So for a fraction, such a function could be
implemented as follows:

def __str__(self):
return "{}/{} ({})".format(self.num, self.den, self.getReal())

Displaying a fraction would then be possible via the following much simpler statement (via syntactic
sugar):

print f1

Adding this function to the fraction class is simple. Here's a snippet of the addition:
defines a fraction
class Fraction(object):

...

returns a fraction's string representation
def __str__(self):

return "{}/{} ({})".format(self.num, self.den,\
 self.getReal())

...

main program
f1 = Fraction(1, 2)
f2 = Fraction(1, 4)
f3 = f1.add(f2)

print f1
print f2
print f3

Of course, the output is the same as before!

Gourd, Kiremire, O'Neal, Blackman 19 Last modified: 28 Feb 2018

��

Activity 3: Reducing fractions

You may have noticed that instantiating the fraction 6/8 would work just fine. The problem is that this
fraction is not expressed in lowest terms. That is, it can be reduced (to 3/4). Our fraction class would
greatly benefit from a function that can reduce a fraction. Such a function could be called in the
constructor after setting the numerator and denominator in case it is not in lowest terms.

Although there are many ways to reduce a fraction, here's a simple algorithm that calculates the greatest
common divisor (GCD) among the numerator and denominator. First, initially assume that the GCD is
1. From there, iterate, starting with 2 through the smaller of the numerator or denominator. Each time,
the objective is to try to find a value that evenly divides both the numerator and denominator. As such a
value is found, the GCD is updated. The final step is to divide the numerator and denominator by the
GCD (which reduces the fraction). As a cleanup operation, if the numerator is 0 (i.e., the fraction's
numeric value is 0.0), the denominator is set to 1 (i.e., 0/1).

This is shown in the snippet of code below (which can be placed anywhere in the fraction class):
reduces a fraction
def reduce(self):

we initially assume that the GCD is 1
from there, we iterate starting at 2 through the smaller
of the numerator or denominator
since the numerator and denominator could be negative,
we use their absolute values
each time, we try to find a value that evenly divides
both the numerator and denominator
as we find such a value, we update the GCD
the final step is two divide the numerator and
denominator by the GCD to reduce the fraction
as cleanup, if the numerator is 0 (i.e., the fraction is
0) then set the denominator to 1
gcd = 1
minimum = min(abs(self.num), abs(self.den))

find common divisors
for i in range(2, minimum + 1):

when we find one, update the GCD
if (self.num % i == 0 and self.den % i == 0):

gcd = i

divide the numerator and denominator by the GCD
self.num /= gcd
self.den /= gcd

if the numerator is 0, set the denominator to 1
if (self.num == 0):

self.den = 1

Gourd, Kiremire, O'Neal, Blackman 20 Last modified: 28 Feb 2018

��

The Python math library has many useful functions. The min function returns the minimum value of a
number of values passed in as parameters. This makes it quite easy to determine which of the
numerator or denominator is smaller. Since a function's numerator or denominator could be negative,
we use their absolute value to determine which is smaller. The abs function returns the absolute value
of a specified value.

So where (and when) do we call the reduce function? For the fraction class shown earlier, we could

do so in the constructor as follows:
defines a fraction
class Fraction(object):

by default, a fraction is 0/1
def __init__(self, num = 0, den = 1):

self.num = num
make sure not to set the denominator to 0 if\
specified
if (den == 0):

den = 1
self.den = den

self.reduce()

This works; however, the mutators for the numerator and denominator may cause a fraction to no longer
be reduced. We could, therefore, call the reduce function at the end of the mutators. There is a

problem with this, however. Since the constructor uses the mutator for the numerator (in self.num

= num) before the denominator is even set, a call to the function reduce in the mutator for the

numerator would attempt to access the denominator (which doesn't exist). This would result in an error.

We could try to place a call to the reduce function in the mutator for the denominator. But this is also

problematic, because the reduce function uses the mutator for the denominator to change the

denominator (i.e., when dividing it by the gcd). Placing it here would cause the reduce function to be

recursively called infinitely!

Perhaps the best place to put the call to the reduce function is in the __str__ function (i.e., when

displaying a fraction).

Activity 4: Adding fractions...and more

Let's now implement the functionality to add two fractions and produce the sum of these as a new
fraction. We must first discuss how two fractions can be added. Typically, the least common
denominator is found. A simpler version, however, is to multiply each fraction by the other's
denominator to obtain a common denominator (that is not necessarily the least common denominator).
Here's an illustration:

a

b
+

c

d
=

a∗d

b∗d
+

b∗c

b∗d

As an example, take the following:

Gourd, Kiremire, O'Neal, Blackman 21 Last modified: 28 Feb 2018

��

1

2
+

1

4
=

1∗4

2∗4
+

2∗1

2∗4
=

4

8
+

2

8
=

6

8
=

3

4

So now, how do we implement a method in the fraction class that does this? One way is as follows:
calculates and returns the sum of two fractions
def add(self, other):

num = (self.num * other.den) + (other.num * self.den)
den = self.den * other.den
sum = Fraction(num, den)
sum.reduce()

return sum

This function is called as follows (specifically in the third statement below):
f1 = Fraction(1, 2)
f2 = Fraction(1, 4)
f3 = f1.add(f2)

Note that both fractions are effectively passed in to the add function. The first, f1, represents the

current instance and is mapped to the first parameter, self. The second, f2, is mapped to the second

parameter, other.

The function implements the common denominator method shown above and generates a fraction
representing the sum of self and other. The new fraction is then reduced and returned. Note that

calling the reduce function here is not necessary if it is called in the __str__ function.

The function could be optimized (perhaps at the expense of not being quite as readable) by returning a
new fraction directly instead of creating one and returning it. For example:

return Fraction(num, den)

In fact, the function could be optimized even more as follows:
return Fraction(self.num * other.den + other.num * self.den,\

self.den * other.den)

Of course, we could implement functions to subtract, multiply, and divide fractions! In fact, we could
implement a subtract method by using the already defined add method. How? Recall that subtracting is
just adding the negative. Since this will be assigned as a program later, it is left as an individual
exercise for now.

Operator overloading
In the last example above, we defined a function in the fraction class that adds two fractions and returns
the sum. We used this function similar to the following snippet of Python code:

f1 = Fraction(1, 2)
f2 = Fraction(3, 4)
print f1.add(f2)

As expected, the output of these statements is 5/4 (1.25).

Gourd, Kiremire, O'Neal, Blackman 22 Last modified: 28 Feb 2018

��

The way in which we call the addition function seems a bit tedious. Why can't we just use the addition
operator? For example, why can't we just add two fractions, f1 and f2, by merely using the expression

f1 + f2? This would mean that the following modification of the example above would work as

expected:
f1 = Fraction(1, 2)
f2 = Fraction(3, 4)
print f1 + f2

It turns out that such a thing is possible through a concept called operator overloading. Operator
overloading is the act of redefining the behavior of operators (such as addition and subtraction) using
their known symbols (+ for addition, – for subtraction, and so on) in order to support these operations on
user-defined data types. For example, redefining the addition operator for the fraction class could mean
implementing the common denominator method described earlier.

Python has various internal magic functions that support the redefinition of common operators. The
main idea is to encapsulate the new, redefined behavior in a function that is automatically called (using
syntactic sugar) when two objects of the class are used as operands with the specified operator. For the
purpose of the fraction class, we will only consider the four arithmetic operators.

The addition operator (+) can be redefined in a function called __add__ as follows:
def __add__(self, other):

num = (self.num * other.den) + (other.num * self.den)
den = self.den * other.den
sum = Fraction(num, den)
sum.reduce()

return sum

Note that the source code in the new overloaded __add__ function is exactly the same as it was in the

original add function shown earlier.

The subtraction operator (–) can be redefined in a function called __sub__ as follows:
def __sub__(self, other):

...

Note that for this and the remaining operators, the source code is not provided. Instead, appropriate
code is replaced with an ellipsis (…).

The multiplication operator (*) can be redefined in a function called __mul__ as follows:
def __mul__(self, other):

...

Lastly, The division operator (/) can be redefined in a function called __div__ as follows:
def __div__(self, other):

...

The fraction class has now grown! Take a look:

Gourd, Kiremire, O'Neal, Blackman 23 Last modified: 28 Feb 2018

��

defines a fraction
class Fraction(object):

by default, a fraction is 0/1
def __init__(self, num = 0, den = 1):

self.num = num
make sure not to set the denominator to 0 if\
specified
if (den == 0):

den = 1
self.den = den

self.reduce()

...

calculates and returns the sum of two fractions
def __add__(self, other):

num = (self.num * other.den) + (other.num * self.den)
den = self.den * other.den
sum = Fraction(num, den)
sum.reduce()

return sum

calculates and returns the difference of two fractions
def __sub__(self, other):

replace this with the function's actual\
implementation
return None

calculates and returns the product of two fractions
def __mul__(self, other):

replace this with the function's actual\
implementation
return None

calculates and returns the division of two fractions
def __div__(self, other):

replace this with the function's actual\
implementation
return None

...

In fact, we can now perform all of the implemented arithmetic operations on fractions. Here's a snippet
of Python code that tests the fraction class and assumes that the operator overload functions have been
fully implemented:

main program

Gourd, Kiremire, O'Neal, Blackman 24 Last modified: 28 Feb 2018

��

f1 = Fraction(1, 2)
f2 = Fraction(1, 4)

print f1
print f2
print f1 + f2
print f1 - f2
print f1 * f2
print f1 / f2

And here is the output:
1/2 (0.5)
1/4 (0.25)
3/4 (0.75)
1/4 (0.25)
1/8 (0.125)
2/1 (2.0)

Class diagrams
In computer science courses, you are often asked to design simple programs. The ability to understand
and hold everything in one's head when solving a simple problem is relatively straightforward and, well,
usually pretty simple. However, when solving complicated problems and developing solutions to these
problems as large and tedious applications, it becomes quite difficult to manage all of the parts and
pieces. Often, we require the use of tools and techniques that incorporate visual aids and diagrams to
assist us in managing the structure and components of these applications.

A class diagram is a type of diagram that describes the structure of a program by visualizing its classes,
their state and behavior, and their relationships. The most simple class diagram only shows the classes
of a program, which are represented as rectangles.

To illustrate how a class diagram could be used to model an application's structure, let's consider one
that models vehicle traffic in a large city for the purpose of analyzing how it manages traffic during rush
hour. This kind of application would be useful in learning about traffic patterns, congestion, and so on.
In fact, it could help to redesign roads, entrances to and exits from highways and interstates, the
placement and timing of traffic signals, etc. Such an application may include classes for cars, pickup
trucks, buses, tractor trailers, motorcycles, and so on, since all of these things contribute to the traffic in
a city. In fact, the application could be modeled with a class diagram as follows:

Gourd, Kiremire, O'Neal, Blackman 25 Last modified: 28 Feb 2018

��

The classes of an application are always singular nouns. Since a class is a blueprint for objects, then a
class is essentially like a rubber stamp. For example, we can define a class that describes the blueprint
for a car. This class would be considered the car class and be formally called Car. As mentioned
earlier, the names of classes are typically capitalized. Since they are identifiers, they also must not
contain spaces and abide by all of the rules for naming identifiers in the programming language. In
Python, the car class could be defined as follows:

class Car:
...

Instances of the car class would collectively be called cars (and there could be many of them).
Similarly, the class for a pickup truck could be called PickupTruck, and would be defined in Python as
follows:

class PickupTruck:
...

The beauty of a class diagram is that it allows us to very easily see the components of a system or
application. In the class diagram above, there is no indication of the state and behavior of classes, nor is
there any indication of any relationships between classes. We will get to this later.

Inheritance
As you know, the object-oriented paradigm attempts to mimic the real world, particularly in how it is
made up of objects that interact with each other. In the real world, objects also have relationships, and
this is useful! For example, a person inherits traits from parents. Specifically, a person inherits physical
traits (e.g., height, hair color, etc) and behavioral traits (e.g., manner of speaking). This behavior is
represented in the object-oriented paradigm as well.

To illustrate how this is done, let's consider the application that models vehicle traffic described earlier.
Let's begin with the car class that serves as the blueprint for a car in the traffic simulation. What might
its state and behavior look like? That is, what are cars made up of? What can they be, and what can
they do? Very quickly, we can think of attributes such as year, make, model, mileage, and so on. This
represents the state of a car. We can also think of behaviors such as start, move, turn, park, and so on.
In fact, we could quickly design a car class now that we know how to do so in Python!

Now let's consider a pickup truck class that serves as the blueprint for a pickup truck in the traffic
simulation. Its state would most likely be very similar to that of the car class. And so would its

Gourd, Kiremire, O'Neal, Blackman 26 Last modified: 28 Feb 2018

Car PickupTruck

Bus

TractorTrailer Motorcycle

��

behavior. In fact, not much differentiates a car from a pickup truck. They both generally have the same
attributes and do the same thing. Imagine designing the classes for a car and a pickup truck. You may
think that the classes would share many similarities in both state and behavior (and you would be right).

Now imagine maintaining such an application. Suppose that the implementation of some behavior that
is similar across cars and pickup trucks needs to be modified. This would require changing both the car
and pickup truck classes because code is duplicated across the two classes. Dealing with this type of
thing increases the likelihood of bugs. The beauty of the object-oriented paradigm is that it allows the
inheritance of state and behavior from class-to-class, just like we inherit traits from our ancestors!

The state and behavior that is shared among the car and pickup truck classes in the traffic simulation
application could be captured in a more general class. Such a class could, for example, be called a
Vehicle. All of the state and behavior that is shared among any type of vehicle would be defined in this
class. Specific kinds of vehicles (like cars and pickup trucks) would then inherit these traits. Any
modifications to the state and behavior of vehicles of all types could be made in the vehicle class and be
automatically applied to all types of vehicles!

In fact, let's amend the class diagram shown earlier by including a vehicle class that defines the overall
state and behavior that all types of vehicles (cars, pickup trucks, buses, tractor trailers, and motorcycles)
share:

Note how all of the classes that inherit state and behavior from the vehicle class now have solid arrows
pointing toward the vehicle class. In a class diagram, this indicates an inheritance relationship.
Specifically, the car, pickup truck, and other classes shown at the bottom of the class diagram inherit
state and behavior from the vehicle class. A class that defines state and behavior that is inherited by
other classes is called a superclass. The classes that inherit from it are called subclasses. In the class
diagram above, the class Vehicle is a superclass of the class Car, and the class Car is a subclass of the
class Vehicle.

The inheritance relationship is often called the is-a relationship. This is actually quite clear from the
class diagram: a Car is a Vehicle, a Bus is a Vehicle, and so on. There is also the has-a relationship.
This represents a composition relationship and refers to the state of an object. Specifically, we often
note the has-a relationship in class diagrams for classes that contain other classes.

In terms of how this is accomplished in Python source code, we merely need to specify the superclass
in a subclass' class definition. For example, consider the class Car (which is a subclass of the superclass
Vehicle). To note this relationship in Python, we merely need to define the Car class as follows:

class Car(Vehicle):
...

Gourd, Kiremire, O'Neal, Blackman 27 Last modified: 28 Feb 2018

Car PickupTruck Bus TractorTrailer Motorcycle

Vehicle

��

This establishes the relationship that the class Car is a subclass of the class Vehicle, and that the class
Vehicle is a superclass of the class Car.

Next, consider an engine class that defines everything that an engine can be and do. Clearly, a car has an
engine. So does a pickup truck, a bus, a motorcycle, and so on. In general, all of these vehicles have an
engine. Since all vehicles have an engine, in the design of the application we may include the engine
class as part of the state of the vehicle class. Specifically, we would include an instance of the engine
class in the vehicle class. All subclasses of the vehicle class would then inherit this attribute. We note
the has-a relationship in a class diagram with a dashed arrow that point toward the composed class.
Here is an amended class diagram that now includes the engine class:

This important relationship illustrates that objects can, in fact, create other objects! In the example
above, a vehicle can create an instance of an engine. Although the state and behavior of all vehicles is
defined in the vehicle class, nothing stops any of its subclasses from redefining or specializing these
attributes or behaviors. That is, although a car and a motorcycle both have an engine, they are quite
different. Simply because the engine class is included in the vehicle class does not prevent a car or a
motorcycle from specializing the engine and uniquely setting its state.

Let's further illustrate the concept of inheritance by expanding the world of vehicles. In this expanded
world, there are two types of vehicles: land vehicles (that move on land) and air vehicles (that fly in the
air). The types of land vehicles that exist include all of the vehicles described earlier (e.g., cars, pickup
trucks, etc), and the types of air vehicles that exist include airplanes, helicopters, and ultralights. While
we're at it, let's define multiple types of engines for land vehicles (e.g., V-6, V-8, and I-6), and multiple
types of engines for air vehicles (e.g., turbo prop and jet engine).

Gourd, Kiremire, O'Neal, Blackman 28 Last modified: 28 Feb 2018

Car PickupTruck Bus TractorTrailer Motorcycle

Vehicle Engine

��

Try to represent this expanded world with a class diagram in the space below:

Here is one possible class diagram:

Gourd, Kiremire, O'Neal, Blackman 29 Last modified: 28 Feb 2018

Car

PickupTruck

Bus

TractorTrailer

Motorcycle

Vehicle

Engine

LandVehicle AirVehicle

Airplane

Helicopter

Ultralight

V6

V8

I6

TurboProp

JetEngine

��

Often, we include the state and behavior of classes in the class diagram. Suppose that the class
LandVehicle has the instance variables year, make, and model, and the functions start, stop,

and turn. The class diagram for this single class would be extended as follows:

Typically, we include the types of instance variables and adhere to the following format:
variable_name : variable_type

For functions, we include the names and types of any parameters and adhere to the following format:
function_name(parameter1_name : parameter1_type, …)

You have probably noticed that this extension of class diagrams makes it quite easy to implement the
source code for the class!

The object class

The inheritance relationship is easily implemented in Python classes in the class header. Earlier, when
discussing accessors and mutators (with the dog class), we noted that the class definition must include
what you now know to be an inheritance relationship with a class called object. In fact, here was the
class header for the dog class:

class Dog(object):
...

Formally, the class object is defined to be the ultimate superclass for all built-in (i.e., user-defined)
types. As shown, it is possible to have multiple levels of inheritance (e.g., the class Car is a subclass of
the class LandVehicle which is a subclass of the class Vehicle). At the top of this inheritance hierarchy
lies the object class. Although it is not strictly necessary, the class header for the vehicle class can be:

class Vehicle(object):
...

To support the syntactic sugar method of implementing accessors and mutators, an inheritance
relationship must be specified. For the dog class, we needed to specify the object class as its superclass.
In the case of the class Car, for example, it already inherits from the class LandVehicle. This is
sufficient to support accessors and mutators using syntactic sugar. To better illustrate this, let's consider
the following class diagram:

Gourd, Kiremire, O'Neal, Blackman 30 Last modified: 28 Feb 2018

LandVehicle

year : integer
make : string
model : string

start()
stop()
turn(direction : string)

��

From this class diagram, we can quickly begin laying out the source code for the classes. In fact, the
class headers can be directly inferred from the class diagram:

class Vehicle(object):
…

class DodgeRam(Vehicle):
…

class Engine(object):
...

Gourd, Kiremire, O'Neal, Blackman 31 Last modified: 28 Feb 2018

Vehicle

year : integer
make : string
model : string
engine : Engine

Engine

kind : string

DodgeRam

name : string

��

Since the class diagram includes the state of each class, declaring instance variables in the constructors
of each class and providing appropriate accessors and mutators is also relatively straightforward. In
fact, here's the entire Vehicle class:

class Vehicle(object):
def __init__(self, year, make, model):

self.year = year
self.make = make
self.model = model
self.engine = None

@property

def year(self):
return self._year

@year.setter

def year(self, value):
self._year = None
if (value > 1800 and value < 2018):

self._year = value

@property

def make(self):
return self._make

@make.setter

def make(self, value):
self._make = value

@property

def model(self):
return self._model

@model.setter

def model(self, value):
self._model = value

@property

def engine(self):
return self._engine

@engine.setter

def engine(self, value):
self._engine = value

def __str__(self):
return "Year: {}\nMake: {}\nModel: {}\nEngine:\

 {}".format(self.year, self.make, self.model,\
 self.engine)

Gourd, Kiremire, O'Neal, Blackman 32 Last modified: 28 Feb 2018

��

The constructor includes parameters for a vehicle's year, make, and model. By default, a vehicle's
engine is undefined (i.e., None). The class contains getters and setters for each of the instance

variables. Finally, the __str__ function defines how to represent a vehicle as a string, which is in the

following format (with an example for clarity):
Year: 2016
Make: Dodge
Model: Ram
Engine: V6

Here is the entire Engine class:
class Engine(object):

def __init__(self, kind=None):
self.kind = kind

@property

def kind(self):
return self._kind

@kind.setter

def kind(self, value):
self._kind = value

def __str__(self):
return str(self.kind)

The Engine class has a single instance variable (its kind). Its constructor includes one parameter for the
kind of engine (None by default). A getter and setter is provided for the instance variable. The string

representation of an engine is just its kind.

Lastly, here is the DodgeRam class:
class DodgeRam(Vehicle):

make = "Dodge"
model = "Ram"

def __init__(self, name=None, year=None):
Vehicle.__init__(self, year, DodgeRam.make,\

 DodgeRam.model)
self.name = name

@property

def name(self):
return self._name

@name.setter

def name(self, value):
self._name = value

Gourd, Kiremire, O'Neal, Blackman 33 Last modified: 28 Feb 2018

��

def __str__(self):
return "Name: {}\n{}".format(self.name,\

 Vehicle.__str__(self))

The DodgeRam class has a single instance variable (its name). Its constructor takes two parameters (for
a DodgeRam's name and year). Note that the class contains two class variables that are shared among
all instances of the class: make and model. This makes sense, because all instances of the class
DodgeRam are Dodge Rams! That is, their make is Dodge, and their model is Ram.

There are two more interesting (and new) things in the class DodgeRam. Take a look at the first
statement in the constructor:

Vehicle.__init__(self, year, DodgeRam.make, DodgeRam.model)

When implementing inheritance relationships, it often becomes useful and sometimes necessary to
invoke or call functions in a subclass' superclass. Formally, state and behavior that are defined in the
superclass are inherited in a subclass. They can be redefined in the subclass; however, they don't
necessarily need to be. In fact, a subclass may inherit a function and need to implement the inherited
behavior first. This is accomplished by calling the function in the superclass. Since the current object
(self) is not an instance of the superclass, then invoking a function in the superclass is done by using the
superclass' name. So the first part of the statement, Vehicle.__init__, means to call the

constructor in the Vehicle class (the superclass of the DodgeRam class).

In this case, the year, make, and model are passed as parameters to the constructor in the Vehicle class.
This effectively sets up the appropriate instance variables in the Vehicle class (which are inherited in the
DodgeRam class). Subsequently, the constructor in the DodgeRam class then initializes its only
instance variable, name.

Did you know?

There is another way of referring to a superclass by using a built-in function called super. This

function takes two parameters: the name of the subclass and the instance of the subclass, self. For

example, in the subclass DodgeRam, referring to the superclass Vehicle could be accomplished as
follows:

super(DodgeRam, self)

To then invoke a function in the superclass, we simply append the function name and any parameters
(other than self) to the super function; for example:

super(DodgeRam, self).__init__(year, DodgeRam.make, DodgeRam.model)

Note that this applies to Python version 2.7.x. An updated syntax is provided in Python version 3 that is
beyond the scope of this lesson.

Another new thing in the class is the statement in the __str__ function:
return "Name: {}\n{}".format(self.name, Vehicle.__str__(self))

The string representation of a DodgeRam is its name, followed by the string representation of a Vehicle
(which was illustrated earlier). The latter part of the statement calls the __str__ function in the

Vehicle class:

Gourd, Kiremire, O'Neal, Blackman 34 Last modified: 28 Feb 2018

��

Vehicle.__str__(self)

Again, this illustrates a call to a function in the superclass. This call returns the string representation of a
vehicle – which is displayed below the name of the DodgeRam; for example:

Name: Boss Hog
Year: 2016
Make: Dodge
Model: Ram
Engine: V6

So the string representation of a DodgeRam is simply its name, followed by the inherited string
representation of a Vehicle.

Why inheritance?
There are clear benefits of using inheritance in our programs. In a sense, it makes the reasoning of an
application more possible since it attempts to mimic the world that we live in. But it also reduces code
duplication, because similarities between objects can be encapsulated in superclasses. This has the
downstream effect of promoting the reuse of code, and intrinsically makes code maintenance much
easier. In fact, we often say that if software is not maintained, it dies! So we maintain software often. It
behooves us to make this process easier.

Lastly, inheritance makes applications easier to extend. Think of adding a different type of vehicle (say,
a HondaCivic). Without inheritance, we would have to include instance variables for year, make,
model, and so on. However, these are already defined in the Vehicle class! We simply need to define
the class HondaCivic as a subclass of the class Vehicle in order to inherit its state and behavior:

class HondaCivic(Vehicle):
...

Single inheritance vs. multiple inheritance
The inheritance relationship that has been discussed thus far is known as single inheritance. That is, a
subclass inherits state and behavior from a single superclass. Most object-oriented programming
languages support single inheritance. Often, however, there is a need to support multiple inheritance,
where a subclass can inherit from more than one superclass.

To illustrate this, consider a grocery store's items. A banana, for example, is a fruit. Therefore, it may
inherit traits from a fruit superclass such as type, country of origin, etc. However, in the context of a
grocery store, a banana is also an item for sale. Such a sale item has a price, an inventory, a shelf
location, etc. Inheriting from both a Fruit superclass and a SaleItem superclass, for example, would be
useful in implementing the point-of-sale system for a grocery store.

Most object-oriented programming languages do not support multiple inheritance. Some do, but only in
a limited form. Java, for example, supports it in a limited form by utilizing something known as an
interface. The technical details of this are beyond the scope of this lesson. Python, however, directly
supports multiple inheritance. One must merely list all of a subclass' superclasses in the class header;
for example:

class Banana(Fruit, SaleItem):
...

OO quick reference

Gourd, Kiremire, O'Neal, Blackman 35 Last modified: 28 Feb 2018

��

We have covered a lot of new terms in this lesson. This final section merely aggregates them all, along
with their definition, so that you can easily and quickly refer to the terms should you need to.

Term Definition

accessor A special method in a class that wraps an instance variable for the purpose of
providing read access.

behavior All of the things that an object can do; implemented using functions in the
class.

class A blueprint for a thing; the definition of state and behavior for an entire class
of things.

class diagram A diagram that models the classes of a system or application, their
relationships, and their members.

class variable A variable that is defined at the class level; its value is shared among all
instances of the class.

constructor A special method in a class that is automatically invoked when a new instance
of the class is instantiated; usually performs initialization tasks (e.g., assigning
default or specified values to the instance variables).

decorator A wrapper; in Python, accessors and mutators are wrapped using a decorator.

dot operator When used on an object reference, accessed the specified member of the class.

has-a A relationship among classes that implies one class making use of another; also
means the ability of an object to create other objects.

inheritance A relationship among classes that permits a class to inherit the state and
behavior of another class; see is-a.

input validation The process of validating a provided input to ensure that it conforms to some
expected range or type.

instance An object that represents the instantiation of a class.

instance variable A variable defined in a method of a class (usually the constructor) that allows
individual instances of the class to uniquely set values to.

instantiate The process of constructing a new instance of a class.

is-a A relationship among classes that permits a class to inherit the state and
behavior of another class; see inheritance.

magic function A special function in Python whose name begins and ends with two
underscores (e.g., __init__, __str__, __add__).

member How we collectively reference the state and behavior of a class.

method How behavior is implemented in a class; they are functions that describe what
an object can do.

multiple inheritance The ability of a class to inherit the state and behavior of multiple classes
simultaneously.

mutator A special method in a class that wraps an instance variable for the purpose of
providing write access; usually implements input validation.

Gourd, Kiremire, O'Neal, Blackman 36 Last modified: 28 Feb 2018

��

object An instance of a class, with specific values assigned to instance variables.

object class The base class for all user-defined objects; the top-most superclass.

object reference A variable name that refers to an object.

operator overloading The redefining of an operator (e.g., the addition operator) on user-defined
objects.

single inheritance The ability of a class to inherit the state and behavior of a single class.

state All of the things that an object can be; implemented using instance variables in
the class.

subclass A class that inherits state and behavior from another class.

superclass A class that another class inherits state and behavior from.

typecast The process of converting a value from one type to another (e.g., converting an
integer to a floating point number).

Gourd, Kiremire, O'Neal, Blackman 37 Last modified: 28 Feb 2018

��

The Science of Computing II Living with Cyber

Number Systems and Binary Arithmetic Pillar: Computer Architecture

The most basic unit of storage is the bit. At any point in time, a bit can be in only one of two states: “0”
or “1.” Bits are generally implemented as two-state electronic devices (e.g., a current is flowing or not
flowing, a voltage is high or low, a magnetic field is polarized in one direction or the opposite direction,
etc). The symbol “0” is used to represent one of these states and the symbol “1” is used to represent the
other. It really doesn’t matter which symbol (the “0” or the “1”) represents which physical state (e.g.,
“high” or “low”). All that is important is that the symbols be assigned consistently and that the two
states be clearly distinguishable from each other.

Sequences (or “patterns”) of bit values can be used to represent numbers (both positive and negative,
integer and real), alphanumeric characters, images, sounds, and even program instructions. In fact,
anything that can be stored in a computer must ultimately be stored as a pattern of bit values.

The binary number system
Today, virtually all civilizations use a base ten counting system. However, this has not always been so.
In primitive tally systems, for example, there is one stroke for each object being counted. For example,
the following tally pattern represents twelve:

Some tally systems group strokes together. The one illustrated above places five strokes in each group.
Most early systems attached little or no meaning to the order of the symbols used to represent a number.
Roman numerals did use position, but only to indicate whether one value should be added to or
subtracted from another value. For example, the Roman numeral MMC stands for 2,100, because “M”
represents one thousand, “C” represents one hundred, and the positional rule states that when the
symbols are arranged in order of decreasing value, all of the values should be added together. Hence,
the meaning of MMC is 1,000 + 1,000 + 100 = 2,100. On the other hand, MCM means 1,900, because
the positional rules states that when a symbol for a smaller value immediately precedes a symbol for a
larger value, the smaller value is to be subtracted from the larger value. So, MCM is 1,000 + (1,000 –
100) = 1,900. The year 1999 as a Roman numeral is written MCMXCIX, meaning 1,000 + (1,000 –
100) + (100 – 10) + (10 – 1).

Positional notation truly became useful only after the zero digit was introduced. Our modern decimal
number system is a base ten positional system. It uses the ten symbols “0” through “9.” We count by
sequencing through these symbols: “0” for zero, “1” for one, “2” for two, and so on. Once the last
symbol is encountered (i.e., “9”), how do we represent the next number? What we need to do is replace
the current symbol, “9”, with the first symbol in the series, “0”, and then increment the symbol
immediately to the left of the current symbol by one. Since base ten numbers are assumed to be
preceded by (usually unwritten) 0’s, the number nine can be written as “09.” Hence, cycling “9” back to
“0” and incrementing the leftmost “0” to “1” gives “10” as the base ten symbol for the number ten. To
continue counting, we cycle the rightmost digit through the symbols “0” through “9” again, producing
“10” through “19” for the numbers ten through nineteen. The number twenty can be represented by
resetting the “9” to “0” and replacing the “1” with the next symbol in the sequence, “2”, giving “20.” If
we extend this to, say “99,” the idea is still the same. The next number, “100,” is obtained in the same
manner. We first reset the “9” in the right-most digit to “0.” We then attempt to increment the next digit

Gourd, Kiremire, O'Neal 1 Last modified: 11 Jan 2018

��

(also “9”), but it, too, is at the end of the sequence. Therefore, we reset it to “0” as well, and increment
the left-most “0” to “1,” giving “100.”

Computer systems use base two, or binary, instead of base ten. Counting in binary is similar to counting
in base ten. We still cycle through the sequence of symbols, incrementing the symbol to the left of the
current symbol whenever the current symbol cycles back to the beginning of the sequence. The only
difference is that instead of ten symbols, there are only two symbols: “0” and “1” (hence why it is called
the binary number system). We begin counting by sequencing through these symbols: “0” for zero, “1”
for one, and then we have reached the symbol with the largest value. Keeping in mind that the number
one can be rewritten as “01,” we reset the rightmost symbol, “1”, to the first symbol in the sequence,
“0”, and then increment the implied “0” immediately to the left to “1” giving “10” (the base two symbol
for two).

Note carefully that the symbol “10” (pronounced “one zero”) when interpreted as a base two number
refers to the number two, not ten. When discussing base two values you should never refer to the
symbol “10” as “ten” since that is not the value of the number represented by this symbol.

Continuing with the example, the next number, three, can be represented in base two as “11” (we simply
increment the right-most digit of “10” from “0” to “1”). To generate the base two representation of four,
we begin with three represented as “011” (remember that it is fine to add 0’s to the left-hand side of a
number symbol). Next, we set the rightmost “1” digit back to “0” and attempt to increment the middle
digit. However, that digit is also at the end of the sequence, since it contains a “1.” So, we reset this
digit to “0” as well and proceed to the third (leftmost) digit, which we increment from “0” to “1.” The
final result is “100,” which is the base two representation of the number four.

This process for generating base two numbers can be continued indefinitely. The base ten (decimal) and
base two (binary) representations of the numbers zero through eight are shown below. For readability,
binary numbers are padded to the left with zeros):

Base 10
(decimal)

Base 2
(binary)

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

Of course, we will need to develop a fast way to find out the number represented by a base two symbol
(instead of “counting up to it”). However, before we leave the notion of counting, let’s investigate one
other base that is commonly used when discussing programs and data at the machine level.

Gourd, Kiremire, O'Neal 2 Last modified: 11 Jan 2018

��

The hexadecimal number system
Base sixteen, or hexadecimal, uses sixteen symbols: “0” through “9” for the numbers zero through nine,
and “A” through “F” for the numbers ten through fifteen. The number sixteen is written as “10” in base
sixteen, since after the symbol “F” is encountered, it is necessary to cycle back to the beginning of the
sequence, “0.” When this occurs, the digit immediately to the left of the current digit (an understood
“0”) is incremented to “1,” giving “10.” The following illustrates the base ten, base two, and base
sixteen representations of the numbers zero through twenty. For readability, binary numbers have been
padded to the left with zeros:

Base 10
(decimal)

Base 2
(binary)

Base 16
(hexadecimal)

0 00000 0

1 00001 1

2 00010 2

3 00011 3

4 00100 4

5 00101 5

6 00110 6

7 00111 7

8 01000 8

9 01001 9

10 01010 A

11 01011 B

12 01100 C

13 01101 D

14 01110 E

15 01111 F

16 10000 10

17 10001 11

18 10010 12

19 10011 13

20 10100 14

In order to clearly distinguish which base a number-symbol is to be interpreted under, we generally write
the base (two, ten, or sixteen) as a subscript immediately following the digits of the number. Therefore,
112 is three, 1110 is eleven, and 1116 is seventeen. It is standard operating procedure to omit the subscript
base if the number is in base 10 (decimal). Repeating the above examples: 112 is three, 11 is eleven,
and 1116 is seventeen.

Gourd, Kiremire, O'Neal 3 Last modified: 11 Jan 2018

��

Number system conversion
Now that we have reviewed the concept of number systems and the idea of counting in a variety of
bases, let’s look more carefully at what exactly a numeric “base” is. As you learned long ago in grade
school, 123 is the way we normally write the number one hundred twenty-three. This is because the “1”
is in the hundreds place, the “2” is in the tens place, and the “3” is in the ones place. That is, the digits
are positional. Each digit is multiplied by the value of its position (think of this as a weight for each
digit position), and the results are then added together. Consider the following way of breaking down
the number 123:

102 101 100

100 10 1

1 2 3

= (1 * 102) + (2 * 101) + (3 * 100)

= (1 * 100) + (2 * 10) + (3 * 1)

= 100 + 20 + 3

= 123

The system we normally use for representing numbers is called the decimal number system. In this
system, the rightmost digit is referred to as being in the one’s or “units” position. Immediately to the left
of the units position is the ten’s position. To the left of the ten’s position is the hundred’s position, then
the thousand’s, then the ten thousand’s, and so on. The decimal number system is a “base ten” positional
number system, because the value of each position can be expressed as a power of the number ten.

The exponent that the base is raised to is given by the position minus one. The right-most position (i.e.,
position 1), or units position, is 100. Note that anything to the power of zero is equal to 1. This right-
most position is also known as the least significant position or digit (since it is represented by the lowest
power of 10). The tens position is 101, the hundreds is 102, the thousands is 103, and so on. The value of
each position is exactly ten times the value of the position immediately to its right.

The other bases work similarly. In the binary number system, the base is two; therefore, the values of
the positions (given from right to left) are one (20), two (21), four (22), eight (23), sixteen (24), thirty-two
(25), and so on. The value of each position in a base two system is two times the value of the position
immediately to its right. For example, the number five is represented in base two as 1012 (since there is
a one in the four’s position and a one in the units position). This is illustrated below:

22 21 20

4 2 1

1 0 1

Gourd, Kiremire, O'Neal 4 Last modified: 11 Jan 2018

��

= (1 * 22) + (0 * 21) + (1 * 20)

= (1 * 4) + (0 * 2) + (1 * 1)

= 4 + 0 + 1

= 5

In the hexadecimal number system, the base is sixteen. Therefore, the values of the positions (again
from right to left) are one (160), sixteen (161), two hundred fifty-six (162), four thousand ninety-six (163),
and so on. The value of each position in this system is exactly sixteen times the value of the position
immediately to its right. The value of the base sixteen number 1A316 is four hundred nineteen, since
there is one in the two hundred and fifty six's position, ten in the sixteen’s position, and three in the units
position. This is illustrated below:

162 161 160

256 16 1

1 A 3

= (1 * 162) + (A * 161) + (3 * 160)

= (1 * 256) + (10 * 16) + (3 * 1)

= 256 + 160 + 3

= 419

Here's one more example illustrating the representation of the number “nineteen ninety nine” in all three
of the bases we have discussed; first, in base ten:

103 102 101 100

1000 100 10 1

1 9 9 9

= (1 * 103) + (9 * 102) + (9 * 101) + (9 * 100)

= (1 * 1,000) + (9 * 100) + (9 * 10) + (9 * 1)

= 1,000 + 900 + 90 + 9

= 1,999

Now, in base two:

210 29 28 27 26 25 24 23 22 21 20

1,024 512 256 128 64 32 16 8 4 2 1

1 1 1 1 1 0 0 1 1 1 1

Gourd, Kiremire, O'Neal 5 Last modified: 11 Jan 2018

��

= (1 * 210) + (1 * 29) + (1 * 28) + (1 * 27) + (1 * 26) + (0 * 25)

+ (0 * 24) + (1 * 23) + (1 * 22) + (1 * 21) + (1 * 20)

= (1 * 1,024) + (1 * 512) + (1 * 256) + (1 * 128) + (1 * 64) + (0 * 32)

+ (0 * 16) + (1 * 8) + (1 * 4) + (1 * 2) + (1 * 1)

= 1,024 + 512 + 256 + 128 + 64 + 0

+ 0 + 8 + 4 + 2 + 1

= 1,999

And finally, in base sixteen:

162 161 160

256 16 1

7 C F

= (7 * 162) + (C * 161) + (F * 160)

= (7 * 256) + (12 * 16) + (15 * 1)

= 1,792 + 192 + 15

= 1,999

One of the most common tasks we face when working with multiple bases is converting numbers from
one base to another. We have already seen how to convert from base sixteen and base two to base ten:
simply multiply the value of each symbol by the value of its position and add the results together. But
how do we convert from base ten to base sixteen or to base two? We also need to figure out how to
convert from base two to base sixteen and from base sixteen to base two.

Converting from base two to base sixteen and from base sixteen to base two is easy. In fact, the only
reason computer scientists even use base sixteen is because it serves as convenient “shorthand” for base
two. The following illustrates the fact that each base sixteen digit can be represented by a group of
exactly four base two digits:

Base 16
(hexadecimal)

Base 2
(binary)

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

Gourd, Kiremire, O'Neal 6 Last modified: 11 Jan 2018

��

Base 16
(hexadecimal)

Base 2
(binary)

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

To convert from base sixteen to base two, simply replace each base sixteen digit with its corresponding
group of four binary digits. For example, the rather imposing hexadecimal number 1AFC316 can easily
be converted its binary representation as illustrated below:

1 A F C 3

0001 1010 1111 1100 0011

Therefore, 1AFC316 = 110101111110000112. Note that leading zeros have been removed as they are not
necessary.

Try to convert FACE16 to base two in the table below:

F A C E

Now try to convert 4B1D16 to base two in the table below:

4 B 1 D

Converting from base two to base sixteen is just as straightforward. We scan the base two number from
right to left, replacing each group of four binary digits that we encounter with the equivalent
hexadecimal digit. It is important that we group the digits of the base two representation from right to
left, in case the number of digits is not evenly divisible by four. If this occurs, we simply add leading
zeros until the number of digits is divisible by four. Conversion of the bit pattern 111110011112 to its
hexadecimal representation is shown below:

0111 1100 1111

7 C F

Gourd, Kiremire, O'Neal 7 Last modified: 11 Jan 2018

��

The original bit pattern, 11111001111, was first broken down from right-to-left into groups of four, and a
leading zero was added to the left-most group: 0111 1100 1111. Ultimately, 111110011112 = 7CF16.

Try to convert 11110000000011012 to hexadecimal in the table below:

1111 0000 0000 1101

Try to convert 111011110101001012 to hexadecimal in the table below:

0001 1101 1110 1010 0101

Note that these conversions between binary and hexadecimal representations in no way change the
actual number being represented. For example, 7CF16 and 111110011112 both refer to the same number
(1,999), as was illustrated earlier.

We have now looked at conversion methods from base two (and base sixteen) to base ten, from base
sixteen to base two, and from base two to base sixteen. The only conversions that we have yet to cover
are from base ten to base sixteen and from base ten to base two. We really only need to look at the base
ten to base two conversion, since conversion between base two and base sixteen is so trivial. If you
have a base ten number and want its base sixteen representation, you can apply a decimal to binary
conversion algorithm, and then change the base two result to its base sixteen representation via the
grouping method described above.

A number can be converted from decimal to binary by subtracting from it the largest power of two that is
less than or equal to the number, and repeating until a remainder of zero is reached. The binary
representation of the number is then formed by placing a “1” in the positions corresponding to each of
the powers of two that were subtracted. A “0” is placed in the positions corresponding to the powers of
two that were not subtracted.

For example, take the decimal number 37. The largest power of two that can be subtracted from it is 32
(25), which leaves five. The largest power of two that can be subtracted from 5 is 4 (22), which leaves
one. Finally, the largest power of two that can be subtracted from 1 is 1 (20), which leaves zero. The
base two representation of the number is thus formed by placing a “1” in the thirty-two’s, four’s, and
units positions, and by placing a “0” in all other positions. This gives 1001012. The conversion process
for this number is illustrated below:

Number Minus Power of 2 Equals Leftover

37 – 25 = 32 = 5

5 – 22 = 4 = 1

1 – 20 = 1 = 0

Gourd, Kiremire, O'Neal 8 Last modified: 11 Jan 2018

��

25 24 23 22 21 20

32 16 8 4 2 1

1 0 0 1 0 1

Another method of converting from decimal to binary is to divide the decimal number in half and record
both the quotient and the remainder. We then repeat this process with the quotient, while keeping track
of the remainder of each division. This is repeated until the quotient is zero. The binary equivalent of
the original number is subsequently given by listing the remainders in the reverse order of their
derivation (i.e., from the most recent remainder to the first remainder). Here's this method on the
decimal number 37:

Dividend Divided by Divisor Equals Quotient Remainder

37 / 2 = 18 1

18 / 2 = 9 0

9 / 2 = 4 1

4 / 2 = 2 0

2 / 2 = 1 0

1 / 2 = 0 1

Listing the remainders in reverse order gives 100101 (the same as in the previous example). Therefore,
37

10
 = 100101

2
.

Try to convert the decimal number 642 to base two in the table below:

Dividend Divided by Divisor Equals Quotient Remainder

/ =

/ =

/ =

/ =

/ =

/ =

/ =

/ =

/ =

/ =

Gourd, Kiremire, O'Neal 9 Last modified: 11 Jan 2018

��

Binary arithmetic
Let's take a look at how arithmetic operations, such as addition and multiplication, can be performed on
binary numbers. First, let's examine binary addition of single digit numbers. The simplest case is the
addition of 0 plus 0. In binary, it is represented as follows:

0 + 0 = 0

Some prefer to view this vertically as opposed to horizontally as follows:

0

+ 0

0

Extending this, zero plus one and one plus zero both equal one:

0 + 1 = 1
1 + 0 = 1

Or vertically:

0 1

+ 1 + 0

1 1

Finally, one plus one equals two. But the problem is that two cannot be represented as a single binary
digit. Instead, we record a zero in the one’s position and carry a one over to the two’s position. This is
represented as follows:

1 + 1 = 0 (carry 1)

Or vertically:

1

1

+ 1

0

Multi-digit binary addition uses the same strategy employed in decimal addition. One works right-to-
left from the least significant digit to the most significant digit, making sure that the carry from the
previous column is added to the current column. Because the carry digit for a particular column may be
“1” at the same time the corresponding digits of both of the numbers being added are also “1,” it is
possible to encounter “one plus one plus one equals three” while performing addition. Since 112 equals
three, “1”should be placed in the current position and another “1” carried over to the position
immediately to the left of the current position. This is be represented as follows:

1 + 1 + 1 = 1 (carry 1)

Gourd, Kiremire, O'Neal 10 Last modified: 11 Jan 2018

��

Or vertically:

1

1
1

+ 1

1

Let's take a look at the addition of 38 + 15 = 53. The following table shows both the binary addition (on
the left) and decimal addition (on the right):

Binary Decimal

Carry 0 1 1 1 0 1

1st number 1 0 0 1 1 0 38

2nd number 1 1 1 1 15

Sum 1 1 0 1 0 1 53

And now the addition of 43 + 58 = 101:

Binary Decimal

Carry 1 1 1 0 1 0 11

1st number 1 0 1 0 1 1 43

2nd number 1 1 1 0 1 0 58

Sum 1 1 0 0 1 0 1 101

Try the addition of 50 + 77 = 127:

Binary Decimal

Carry

1st number

2nd number

Sum

Binary multiplication is also fairly simple. Zero times zero equals zero, as does zero times one and one
times zero. One times one equals one. These expressions can be represented in base two as follows:

0 × 0 = 0

0 × 1 = 0

1 × 0 = 0

1 × 1 = 1

Gourd, Kiremire, O'Neal 11 Last modified: 11 Jan 2018

��

Notice that none of these four expressions generate a carry, and only one generates a result other than
zero. As we will see later, these features lead to binary multiplication being easy to perform; in fact,
even easier to perform than decimal multiplication!

Multiplication of multi-digit binary numbers works in a manner similar to multiplication of decimal
numbers. As we all learned in grade school, multiplication problems are solved by adding together
several partial products. A partial product is formed by multiplying a single digit of the bottom number

times the entire top number. For example, given the base ten multiplication problem 472 × 104, we

would solve it in the following way:

4 7 2

1 0 4

1 8 8 8

4 7 2

4 9 0 8 8

The first partial product is given by multiplying 4 times 472, which is 1888. The second partial product
is computed as 0 times 472, which is 0. Normally we do not write down zero partial products. The final
partial product is 1 times 472. Notice that we write this partial product so that its rightmost digit is
directly under the digit of the second number that we multiplied by (i.e., 1). We then add the partial
products, column by column from right-to-left, in order to obtain the final answer (49,088 in this case).

We apply this same strategy to perform binary multiplication. Let's take a look at the product of 19 × 5

= 95 (in base two: 100112 × 1012 = 10111112):

Binary Decimal

1st number 1 0 0 1 1 19

2nd number 1 0 1 5

Partial
products

1 0 0 1 1

1 0 0 1 1

Product 1 0 1 1 1 1 1 95

We form partial products by multiplying the top number by each of the digits of the bottom number.
Since the right-most digit of the second number is 1, the first partial product is given by 1 times 10011,
or 10011. The right-most digit of this partial product is aligned with the rightmost digit of the second
number. We do not record the partial product for zero times something, so multiplying the first number
by the second digit of the second number, 0, doesn’t generate anything. The final partial product is
computed as 1 times 10011 again, but this time where the right-most digit of this result is aligned
beneath the third digit of the second number. The partial products are then added to obtain the final
result, 10111112.

As we have just seen, in binary multiplication the formation of the partial products is very easy since we
are only multiplying by 1 (in which case we copy the top number into the proper position) or 0 (in which

Gourd, Kiremire, O'Neal 12 Last modified: 11 Jan 2018

��

case we do nothing). The only difficult steps in this process are making sure that we align the partial
products correctly and compute the sum of those products accurately.

Now let's try a more difficult problem: the product of 143 × 23 = 3289 (in base two: 100011112 × 101112

= 1100110110012):

Binary Decimal

1st number 1 0 0 0 1 1 1 1 143

2nd number 1 0 1 1 1 23

Partial
products

1 0 0 0 1 1 1 1 429

1 0 0 0 1 1 1 1 286

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

Product 1 1 0 0 1 1 0 1 1 0 0 1 3289

Here, we copy the top number as a partial product everywhere there is a 1 digit in the second number,
each time making sure that we align the partial product so that the least significant digit is directly
underneath the 1 we are multiplying by. We get the final result by adding the partial products together.

When adding together the partial products, it is important that we handle the carry values properly.
Because there is no limit on the size of the numbers to be multiplied, it is possible that there will be a
large number of partial products. This situation can lead to carry values that extend over multiple
columns. To illustrate this, consider summing a partial product column of five 1s:

Carry 1 0

Partial
products

1

1

1

1

1

Product 1

Considering these separately, we initially add the first two 1s: 1 + 1 = 10. We then add the next one to
that sum: 10 + 1 = 11. We then add the next one: 11 + 1 = 100. Finally, we add the last one: 100 + 1 =
101. So, 1 + 1 + 1 + 1 + 1 = 1012. To record this, we write a 1 in the current column and carry 10,
placing the 0 in the column immediately to the left of the current column and 1 immediately to the left of
that column. This is no different from the situation we encounter when adding up a long series of
decimal numbers. If the current column of digits added to one hundred and one, we would place a 1 in
the current column, carry a 0 to the previous column, and carry a 1 to the column before that.

Let’s take a closer look at the summation of the partial products of the previous example (143 × 23 =

3289). The right-most column of partial products offers no problem. It is simply 1 plus nothing, giving

Gourd, Kiremire, O'Neal 13 Last modified: 11 Jan 2018

��

a result of 1 with no carry. The second column requires us to add 1 + 1 resulting in a 0 with 1 carried
over to the third column. Column three is interesting and is illustrated below:

Carry
1 0 1 0

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

0 0 1

The sum of the digits in column three, including the carry, is 1 + 1 + 1 + 1 = 1002 = 4. Hence, a 0 is
written in column three, a 0 is carried to column four, and a 1 is carried to column five.

Column four contains three 1s, giving us a sum of 112. Hence, we write a 1 in column four and carry a 1
to column five. Note that the 1 we just carried to column five joins the carry of 1 already in that
column:

Carry
1

1 0 1 0

Partial
products

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

Product 1 0 0 1

Column five now contains a total of five 1s (including the two carries). Since five is written in binary as
1012, we write a 1 in column five, and carry a 0 into column six and a 1 into column seven. The current
state of the summation of partial products after adding the contents of column five is illustrated below:

Carry
1

1 0 1 0 1 0

Partial
products

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

Product 1 1 0 0 1

Gourd, Kiremire, O'Neal 14 Last modified: 11 Jan 2018

��

The remainder of the computation is carried out in a similar manner, always being careful to handle the
carries properly. Try it out in the table below:

Carry
1

1 0 1 0 1 0

Partial
products

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

Product 1 1 0 0 1

Binary adder
An adder, as its name implies, is a circuit for adding binary numbers. The simplest adder adds two bits.
As shown above, adding two bits can result in the following:

 1
0 0 1 1

+ 0 + 1 + 0 + 1
0 1 1 10

When adding, two parts are produced: a sum and a carry (each of which can be either 0 or 1). A circuit
to implement the behavior of an adder will need two inputs (one for each of the single-bit numbers) and
two outputs (one for the sum and one for the carry). Constructing such a circuit is fairly straightforward.
Consider the following truth table for the adder (where S is sum and C is carry):

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Notice that the values in the S column correspond to an xor of the two inputs, while the values in the C
column correspond to an and of the two inputs. Here are their respective truth tables for reference:

XOR AND

A B Z A B Z

0 0 0 0 0 0

0 1 1 0 1 0

1 0 1 1 0 0

1 1 0 1 1 1

Gourd, Kiremire, O'Neal 15 Last modified: 11 Jan 2018

��

Note how the output of the xor gate is exactly the same as the sum bit produced by the adder. Similarly,
the output of the and gate is exactly the same as the carry bit produced by the adder. Constructing the
circuit is almost too easy:

This circuit is called a half adder. It has two Boolean expressions: S=(A⋅B)+(A⋅B) and C=A⋅B .

While a half adder does add two single-bit numbers and can generate a carry, it has no provision for a
carry input into the circuit. As shown above, when adding two multi-bit binary numbers, one works
column by column from right-to-left, making sure that the carry bit from the previous column is added
into the current column. Here is the illustration of this process show earlier, on 38 and 15:

Binary Decimal

Carry 0 1 1 1 0 1

1st number 1 0 0 1 1 0 38

2nd number 1 1 1 1 15

Sum 1 1 0 1 0 1 53

A half adder could be used to add the right-most (low-order) bits of the two numbers, but it is not
general enough to add the digits of an arbitrary column since it does not support a carry as input.

A full adder overcomes this limitation of the half adder by allowing a carry to be fed into the circuit
along with a bit from each of the numbers to be added. Thus, a full adder will have three inputs: the two
bits being added, plus a carry in. Only two output bits, the sum and a carry out, are needed because the
largest result that can be produced by the circuit will be three (112). This occurs when all three inputs
are 1. Here is a complete truth table for a full adder. The inputs are almost the same as before, except
that the carry in is labeled Cin, and the carry out is labeled Cout:

Gourd, Kiremire, O'Neal 16 Last modified: 11 Jan 2018

��

Cin A B S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Designing a circuit to implement this behavior from scratch would be challenging. However, through
careful observation and the use of two half adders, the job is manageable. Since we’ll be using half
adders to build the full adder, our circuit diagram will be simpler if we imagine the half adder
encapsulated into a black box, as shown below:

The trick to building a full adder is to think of the sum of the three terms, A + B + Cin, as a sequence of
two sums associated left to right: (A + B) + Cin. One half adder will be used to compute the sum A + B.
The sum bit output by this half adder, along with Cin, will be fed as input into a second half adder. The
sum bit produced by the second half adder will serve as the sum bit of the full adder. The carry out bit
of the full adder is produced by routing the carry out bits of both half adders into an or gate. This is
illustrated below:

Gourd, Kiremire, O'Neal 17 Last modified: 11 Jan 2018

Half Adder

A

B

S

C

Half Adder

C
in S

C
out

S
2

B

Half Adder

A

C
1

C
2

S
1

��

Try to develop a complete implementation of the full adder using only and, or, and not gates below:

Now verify that this circuit does, in fact, generate the truth table for binary addition below:

Cin A B S Cout

Just as we encapsulated the half adder, we can encapsulate the single-bit full adder into a black box.

Gourd, Kiremire, O'Neal 18 Last modified: 11 Jan 2018

Full Adder

SC
out

C
in

AB

��

This representation looks a little different than the previous circuit because it has been rotated clockwise
90 degrees to make the following figure easier to read. Note that the inputs, outputs, behavior, and
internal details of the circuit remain unchanged.

Multi-bit adders can be implemented as a chain of single-bit full adders where the carry out of each
adder is routed to the carry in of the adder immediately to its left. Under this scheme, each full adder is
essentially responsible for adding a single bit of each of the two input numbers, plus the carry bit
generated by the adder immediately to its right. The carry in for the rightmost adder is permanently set
to 0. The carry out of the leftmost adder indicates whether or not addition of the inputs produces an
overflow. We will cover why this is necessary later when discussing how numbers are represented.

Here's a four-bit adder constructed from four single-bit (full) adders. In this example, A holds the
number six (01102) and B holds seven (01112). The result of this addition operation is 11012, or thirteen:

Interestingly, we can continue to build this. To illustrate this, let's go back one step to the full adder. We
can chain two full adders together (each of which can effectively produce the sum and Cout of A, B, and
Cin) to produce the sum of two 2-bit numbers as follows:

Gourd, Kiremire, O'Neal 19 Last modified: 11 Jan 2018

Full Adder

S
0

C
out

0

0

1

C
in

A
0

B
0

Full Adder

S
1

C
out

1

1

C
in

A
1

B
1

10

0

1

��

Indeed, 102 + 112 = 1012 (the overflow bit is 1). And now we can box the two full adders into a single 2-
bit adder as follows:

The result is the same as chaining two full adders. The Cout of the first full adder that is wired to the Cin
of the second full adder is now internal to the 2-bit adder. This 2-bit adder effectively adds two 2-bit
numbers (A and B composed of the bits A0, A1, B0, and B1). It produces two sums (S0 and S1 – one for
each bit) and a Cout (the overflow bit).

We can chain several 2-bit adders in a similar manner to produce a 4-bit adder as follows:

The effect is the same as show earlier when we chained four full adders. This combination of two 2-bit
adders produces the same sum: 01102 + 01112 = 11012 (the overflow bit is 0).

Of course, this can be continued. We could encapsulate the two 2-bit adders into a 4-bit adder, and chain
two of those to produce a single 8-bit adder. Two 8-bit adders could be encapsulated into a single 16-bit
adder. Two 16-bit adders could be encapsulated into a single 32-bit adder. And this can go on and on.
The incredible part about this is that, in the end, a seemingly complicated 32-bit adder is still just made
up of many full adders chained together, which are themselves made up of half adders, which are
themselves made up of the three primitive logic gates: and, or, and not. Simply amazing!

Bitwise operators in Python
Up to this point, we've left out one final class of operators in Python: the bitwise operators. The reason
is that they really only make sense once we understand how numbers are represented in computers.
Moreover, how binary arithmetic works is fundamental to understanding them.

Gourd, Kiremire, O'Neal 20 Last modified: 11 Jan 2018

2-bit Adder

C
in

A
0

A
1

B
0

B
1

C
out

S
0

S
1

0

01

11

0 11

2-bit Adder

C
in

A
0

A
1

B
0

B
1

C
out

S
0

S
1

0

01

11

0 1

2-bit Adder

C
in

A
2

A
3

B
2

B
3

C
out

S
2

S
3

10

10

1 10

1

��

The bitwise operators work on bits and perform bit-by-bit operations. Think back to the primitive logic
gates (and, or, and not) and some derivatives (e.g., xor). Each of these concepts operated on bits and
produced bits. In the following table, assume that a = 60 (or 00111100 in binary) and b = 13 (or
00001101 in binary):

Python Bitwise Operators and Examples

& bitwise and a & b = 00001100 (or 12 in decimal)

| bitwise or a | b = 00111101 (or 61 in decimal)

^ bitwise xor a ^ b = 00110001 (or 49 in decimal)

~ bitwise not ~a = 11000011 (or -61 in decimal; we will explain this one later)

<< left shift a << 2 = 11110000 (or 240 in decimal)

>> right shift a >> 2 = 1111 (or 15 in decimal)

The bitwise not has the effect of inverting the bits. Why 11000011 in binary is equal to -61 in decimal
will be explained in a later lesson. Here is output of the examples in the previous table in IDLE:

Gourd, Kiremire, O'Neal 21 Last modified: 11 Jan 2018

��

Note the use of the bin function. It returns the binary representation of a value. If a = 60, the statement
bin(a) returns 0b111100 (which is 60 in binary). The prefix 0b implies binary. In fact, you can assign

values to variables in binary form using this prefix:

This can be done in other bases as well. For example, in hexadecimal (with the prefix 0x) or in octal
(with the prefix 0o):

Gourd, Kiremire, O'Neal 22 Last modified: 11 Jan 2018

��

The Science of Computing II Living with Cyber

Graphical User Interfaces Beam

Computing devices are indeed ubiquitous. We use them all the time for a variety of tasks. To use them,
we must inherently interact with them. In fact, there's an entire branch of computer science that deals
with the way humans interact with machines (primarily computing machines) called human-computer
interaction (HCI). In this lesson, we will focus on the way that we typically interact with computing
devices: through graphical user interfaces.

A graphic#l user interface (GUI – pronounced “gooey”) is a type of interface that allows users to
interact with computing machines through graphical entities. An interface is just a program that
provides a way of interacting with a computing machine so that a user can use it to do its bidding! The
interface typically monitors input (e.g., clicking with the mouse, typing on the keyboard, etc) and
controls output (e.g., the result of inputs rendered to a monitor). GUIs are the most common type of
interface between humans and computers. In fact, most software products and virtually all popular
computer operating systems are GUI-based.

Formally, GUIs implement an interface metaphor, such as a desktop, that allows users to interact with
computer systems. Software objects, such as programs and data files, are generally represented as
postage stamp sized pictures called icons. A human can access one of these objects by selecting it with a
pointing device, such as a mouse. When opened, an icon expands to become a window. A window is a
portion of the computer screen used to communicate with a particular program. Generally, windows and
icons can be resized (i.e., made larger or smaller) and repositioned anywhere on the desktop. But of
course, you already know all this!

GUI components
Although the types of components that make up a GUI can vary depending on operating system,
application, and various other factors, there are many standard ones that virtually all GUIs support:

• Window: an area on the screen that displays information.

• Menu: allows users to execute commands by selecting from a list of options.

• Icon: a small picture that represents something else (e.g., a file, an application, a command).

• Control: also known as a widget, a component that users directly interact with (e.g., by clicking,

dragging, etc) to perform some task (e.g., launch an application, set a configuration setting, etc).
There are many types of controls that you may be familiar with: list, label, check box, radio
button, slider, spinner, and so on.

• Tab: a way of grouping GUI components in an area of a window.

Events
On their own, GUIs really do nothing. That is, they are specifically designed for user interaction. Users
must interact with a GUI, and when that happens, an event occurs that triggers some sort of action. An
action can be virtually anything, such as opening a file, launching an application, performing a
background task, and so on. We often say that some GUI components listen for user interaction; that is,
they implement what is known as a listener. When the listener detects user interaction (e.g., through a
mouse click), the interaction is registered as an event. The event then triggers some predefined action
that handles it and typically produces some output that is expected by the user.

Gourd, O'Neal 1 Last modified: 25 Jan 2018

��

The Python Tkinter library
By default, Python does not support GUIs. That is, Python is text-based. In fact, the majority of
programming languages are text-based. The print statement, for example, displays text to the console
(the terminal on the RPi, for example). It does not, for example, display text to a graphical window or
on a label positioned somewhere on the user's desktop. The integration and support of GUIs in
programming languages is typically done through internal or external libraries that provide the objects
and tools necessary to create GUIs and to allow users to interact with GUIs.

Although there are many GUI libraries that work with Python, this lesson will focus on one of the more
common and popular ones that is included with Python by default and is cross-platform (i.e., it can be
used to create GUIs on a variety of computing machines and operating systems). This GUI library is
called Tkinter1.

The Tkinter library is complex, yet it is powerful enough to create just about any GUI that a programmer
would need. It would not be possible to cover the entire library in a single lesson. Therefore, we will
take the approach of introducing the most frequently used components that Tkinter supports.
Subsequently, we will show how to create a few simple GUIs that demonstrate a few of the different
types that can be created.

A Tkinter primer
Tkinter stands for “Tk interface.” Tk is a GUI toolkit that has been around for a while and was
originally developed by the same folks that created the Java programming language. Tkinter is an
object-oriented layer that provides a Python interface to the Tk GUI toolkit.

The first thing we must do to use the Tkinter library in a Python program is to import it via:
from Tkinter import *

Although there are various ways to import the library, the above is the most common method of doing so
that reduces the amount of source code required.

The typical manner in which GUIs are created using the Tkinter library is to create a window on which
other components are placed. Let's look at a simple program that creates a window and places a label on
it:

1: from Tkinter import *

2: window = Tk()
3: text = Label(window, text="GUIs in Python are pretty easy!")
4: text.pack()
5: window.mainloop()

Here's the output of this short program:

1 For more information on Tkinter, see https://wiki.python.org/moin/TkInter.

Gourd, O'Neal 2 Last modified: 25 Jan 2018

��

Let's explain the program, line-by-line. You already know the statement on line 1 that imports the
Tkinter library. The statement on line 2 creates a graphical window (that is stored in the variable
window). This must always be done in order to create a GUI using the Tkinter library. Line 3 creates a

Tkinter Label, which is a component that is used to display text, an icon, or an image on a GUI. The
label, which has the text “GUIs in Python are pretty easy!”, is stored in the variable text and is bound

(or attached) to the window as its child. These explain the parameters passed in to the constructor of the
Label class defined in the Tkinter library. The pack function called on line 4 is used on all Tkinter

widgets. In this case, it instructs the label to size itself to fit the specified text and to make itself visible
on the window. However, the GUI is not actually shown on the desktop until the statement on line 5.
This statement instructs the window to appear on the desktop and wait for the user to interact with it. It
will remain on the desktop until the user closes the window (in this case, by clicking on the X at the top-
right of the window).

Let's try a more standard way of creating GUIs using the Tkinter library. This method uses the object-
oriented paradigm to encapsulate the GUI in a class that inherits from a Tkinter Frame. Here's the
program2:

 1: from Tkinter import *

 2: class App(Frame):
 3: def __init__(self, master):
 4: Frame.__init__(self, master)
 5: self.button1 = Button(master, text="BYE!",\
 6: fg="red", command=self.quit)
 7: self.button1.pack(side=LEFT)
 8: self.button2 = Button(master, text=\
 9: "Say something!", command=self.say)
10: self.button2.pack(side=LEFT)

11: def say(self):
12: print "Froot Loops!"

13: window = Tk()
14: app = App(window)
15: window.mainloop()

Here's the resulting GUI:

Clicking on the BYE! button closes the application. Clicking on the Say something! button displays the
string “Froot Loops!” to the console each time it is clicked.

Let's explain the statements of the program as we did before, in the order that they are executed.
Clearly, line 1 imports the Tkinter library. Lines 2 through 12 define the App class and are not yet

2 Inspired by an example from the Tkinter tutorial: An Introduction to Tkinter.

Gourd, O'Neal 3 Last modified: 25 Jan 2018

��

executed. Line 13 creates the main window of the GUI. Line 14 creates a new instance of the App
class, passing the main window as a parameter (it becomes the parent of any GUI components created in
the App class). This launches the constructor of the App class which begins on line 3. Since the App
class is a subclass of the Tkinter Frame class, the constructor of the Frame class is first called on line 4.
This initializes a Tkinter Frame, which serves as a holder for other GUI components. A Tkinter Button
(called button1) is then instantiated as an instance variable on lines 5 and 6. It is set as a child of the

window (called master in the App class), given the text “BYE!” colored in red, and instructed to

execute the function quit when clicked. The function quit is defined in the Tkinter library. For a

frame, it simply closes it.

Line 7 makes the button visible. Note the parameter: side=LEFT. This places the button as far left as

possible in the frame. The default is TOP, which places a component as far to the top as possible. A

second button, button2, is instantiated in lines 8 and 9. This button is instructed to execute the

function say when clicked, which is defined in the App class (on lines 11 and 12). The button is also

positioned as far left as possible (next to button1). The function say simply displays the text “Froot

Loops!” to the console.

Finally, line 15 displays the GUI and allows the user to interact with it.

Common Tkinter widgets
Before we go on to create more elaborate GUIs, let's discuss a few of the more common Tkinter (in
general, GUI) widgets. In fact, the Tkinter library supports fifteen core widgets:

• Button: a button that can be used to execute an action when clicked.

• Canvas: used to draw graphs, plot points, create drawings, etc.

• Checkbutton: a button that can represent two distinct values by being checked or unchecked.

• Entry: used to provide text-based user input.

• Frame: a container that can group other widgets.

• Label: used to display text or an image.

• Listbox: used to display a list of options that the user can select from.

• Menu: used to implement pull-down menus by grouping menu items.

• Menubutton: a single menu item that is used in pull-down menus.

• Message: like a Label, used to display text; however, it is more configurable.

• Radiobutton: a button in a group of buttons that represents one of the values associated with the

group.
• Scale: supports the selection of a numeric value by dragging a slider.

• Scrollbar: provides horizontal and vertical scroll bars for various GUI components.

• Text: supports formatted text, including embedded images and even windows.

• Toplevel: a container that can be displayed as a separate window on top of other components.

Discussing all of these widgets in detail and showing how they can be used in GUIs is beyond the scope
of this lesson. If you wish, you can visit many online tutorials to see these widgets (and more) used in
the creation of GUIs.

Configuring widgets
Most Tkinter widgets can be configured as they are instantiated by specifying various parameters in the
constructor. Here's an example with the Button widget shown above:

b = Button(master, text="Submit", fg="blue", bg="yellow")

Gourd, O'Neal 4 Last modified: 25 Jan 2018

��

Another way of configuring a widget is to invoke its config function. In general, a widget, w, can be

configured as follows:
w.config(option=value, option=value, ...)

For example:
b.config(text="Send", fg="red")

Positioning widgets
Widgets can be positioned in the main window or in a frame using a variety of layouts. The one that has
been used in previous examples is called the pack manager. It configures widgets in rows and
columns. Options such as fill, expand, and side, help determine where a widget is placed and how it
behaves graphically. The pack manager is good for placing a single widget and having it fill an entire
container. It is also good for placing widgets next to each other vertically or horizontally.

The pack manager's fill option is used to have a widget fill the entire space assigned to it. There are
several values that can be assigned to this option: BOTH makes the widget expand both horizontally and
vertically; X makes the widget expand only horizontally; and Y makes the widget expand only
vertically.

The pack manager's expand option is used to assign any additional space in a container to a widget.
That is, if the parent container has any remaining space after packing all widgets, it will be distributed
among all widgets that have the expand option set to a non-zero value.

The pack manager's side option is used to specify which side of the container to place the widget
against. Values for this option are: TOP (the default) which packs widgets vertically; LEFT which packs
widgets horizontally; BOTTOM which packs a widget against the bottom; and RIGHT which packs a
widget to the right. Note that, although these values can be mixed, the results may not be as intended.
Of course, you can easily experiment!

Here's an example of aligning Tkinter Labels vertically, while expanding them horizontally:

Gourd, O'Neal 5 Last modified: 25 Jan 2018

��

And here's the output (note that the window was manually resized to be larger horizontally):

And here's a GUI aligning the labels horizontally, expanding them horizontally, and expanding only the
middle one vertically:

And here's the output (again, the window was manually resized):

There is a much more powerful and flexible layout manager in the Tkinter library called the grid
manager. It also configures widgets in rows and columns; however, each widget's row and column (and
how it behaves in its position in the row and column) can be individually specified. For the purpose of
this lesson, the row and column in which a widget is placed is known as a cell. The grid manager
supports several options: row, column, sticky, columnspan, and rowspan.

The row option is a numeric value that specifies which row in the grid the widget should be placed in.
Rows begin at 0. The column option is a numeric value that specifies which column in the grid the
widget should be placed in. Similarly, columns begin at 0.

The sticky option aligns the widget based on several values: N aligns the widget to the North (i.e., the
top); S aligns the widget to the South (bottom); E aligns the widget to the East (right); and W aligns the
widget to the West (left). Values can be combined; for example, NE aligns the widget to the Northeast

Gourd, O'Neal 6 Last modified: 25 Jan 2018

��

(top-right). They can also be stacked; for example, N+S expands the widget vertically, E+W expands
the widget horizontally, and N+S+E+W expands the widget both vertically and horizontally.

The columnspan option allows a widget to span multiple columns. Similarly, the rowspan option allows
a widget to span multiple rows.

Here's a first example using the grid manager:

The program creates two labels and two text entry fields. Here's its output:

Gourd, O'Neal 7 Last modified: 25 Jan 2018

��

Notice how the labels are, by default, aligned in the center of their cell. We can force them to be aligned
to the left by slightly modifying the source code as follows:

Note how the sticky option has been added to the two labels. Here's the output of the modified program:

Let's add more widgets to see how the rest of the grid manager options can be used. First, however, it is
good practice to doodle by drawing what it is that we are trying to accomplish, especially for GUIs that
are complicated (typically, that's when there are more than just a few widgets). Here's a quick mock-up
of what the GUI will look like:

0 1 2 3

0 l1 e1
l4

1 l2 e2

2 l3

3 c1 b1 b2

For clarity, here are the widget variable names, and their types and descriptions:
• l1: a Label with the text “A label”, left-aligned in row 0, column 0.

• l2: a Label with the text “Another label”, left-aligned in row 1, column 0.

• l3: a Label with the text “A third label, centered”, centered horizontally in row 2, spanning

across columns 0 and 1.
• l4: a Label with a “smiley” image (100x100 pixels), centered horizontally and vertically,

spanning across rows 0 and 1, and columns 2 and 3.

Gourd, O'Neal 8 Last modified: 25 Jan 2018

��

• e1: an empty Entry, centered horizontally in row 0, column 1.

• e2: an Entry with the text “user input”, centered horizontally in row 1, column 1.

• c1: a Checkbutton with the text “Some Checkbutton option”, left-aligned in row 3, spanning

across columns 0 and 1.
• b1: a Button with the text “A button”, centered horizontally in row 3, column 2.

• b2: a Button with the text “Another button”, centered horizontally in row 3, column 3.

Before we get to the source code that creates this GUI, let's take a look at the end result:

Now, let's build the code to create this GUI, a little at a time. We'll start with the following:
from Tkinter import *

class GUITest(Frame):
def __init__(self, master):

...

def setupGUI(self):
...

window = Tk()
t = GUITest(window)
t.setupGUI()
window.mainloop()

At this point, all that's been done is to create the main window. Note that we will be implementing the
GUI as a class (called GUITest) that inherits from the Tkinter Frame class. That is, it's just a frame on
which other widgets will be placed. The GUITest class will, of course, have a constructor. We'll also
implement a setupGUI function that does the bulk of instantiating and positioning the widgets. This

explains the statement t.setupGUI() in the main part of the program at the bottom. The process is

to first create the main window, then create the instance of the GUITest class (which is a frame), then
invoke its setupGUI function to create the GUI, and finally to display the GUI with the statement

window.mainloop().

Let's work on the constructor of the GUITest class:
def __init__(self, master):

Frame.__init__(self, master)

Gourd, O'Neal 9 Last modified: 25 Jan 2018

��

self.master = master

The constructor first calls the constructor of its superclass (the Frame class). Then, it declares an
instance variable, master, that stores the main window. This is necessary so that the setupGUI

function can add widgets as children of the main window.

Now on to the setupGUI function. We'll build the function a little at a time. First, let's add the first

label, l1:
def setupGUI(self):

l1 = Label(self.master, text="A label")
l1.grid(row=0, column=0, sticky=W)

The first statement instantiates a new Label, makes it a child of the main window (again, called
master in the GUITest class), and sets its text. The second statement defines its properties with

respect to the grid manager. It is to be positioned in row 0, column 0, and is to be left-aligned (to the
West).

The next label, l2, is similarly created; however, it is to be positioned in row 1, column 0, and has

different text:
l2 = Label(self.master, text="Another label")
l2.grid(row=1, column=0, sticky=W)

The third label is centered across two columns (0 and 1; therefore, it spans across two columns) in row
2. It also sets the sticky option to E+W, meaning that it will evenly split any leftover space within its
container to the left and right (i.e., it will be centered):

l3 = Label(self.master, text="A third label, centered")
l3.grid(row=2, column=0, columnspan=2, sticky=E+W)

The fourth and final label is an image that is centered across two rows (0 and 1) and two columns (2 and
3). Images are handled a bit differently than text. The image must first be loaded from a file and stored
in a variable. This is done by using Tkinter's PhotoImage class:

img = PhotoImage(file="smile.gif")

Note that the specified image file must be located in the same directory as the Python program. The
label can then be created, with the image set as its contents:

l4 = Label(self.master, image=img)
l4.image = img
l4.grid(row=0, column=2, columnspan=2, rowspan=2,\

sticky=N+S+E+W)

The second statement appears to be redundant. That is, the first seems to assign the variable img as the

label's image; however, the second statement seems to do the same thing. It turns out that an image
created using the PhotoImage class is “garbage collected” when a function that created it terminates.
Once the setupGUI function terminates, the image disappears from the GUI. To prevent this from

happening, we can keep an extra reference to the image. The second statement does this. The sticky
option is set to N+S+E+W, which centers the image both horizontally and vertically.

Gourd, O'Neal 10 Last modified: 25 Jan 2018

��

Next, the first text entry is created, centered in row 0, column 1:
e1 = Entry(self.master)
e1.grid(row=0, column=1)

As mentioned earlier, widgets are centered by default when positioned using the grid manager. The
second text entry widget is similarly added; however, it is in row 1, column 1. In addition, it contains
default text that is added by using the insert function in the Entry class. This is accomplished by

inserting text at the END position of the text entry widget:
e2 = Entry(self.master)
e2.insert(END, "user input")
e2.grid(row=1, column=1)

The Checkbutton widget is left-aligned in row 3 and spans across columns 0 and 1:
c1 = Checkbutton(self.master,\

text="Some Checkbutton option")
c1.grid(row=3, column=0, columnspan=2, sticky=W)

Finally, the two buttons are added. The first button is centered in row 3, column 2:
b1 = Button(self.master, text="A button")
b1.grid(row=3, column=2)

And the second button is centered in row 3, column 3:
b2 = Button(self.master, text="Another button")
b2.grid(row=3, column=3)

Gourd, O'Neal 11 Last modified: 25 Jan 2018

��

This completes the setupGUI function. Here's a complete listing of the function for reference:

Gourd, O'Neal 12 Last modified: 25 Jan 2018

��

As a final example, let's create a GUI on which two-dimensional points are plotted in various colors as
follows:

The CanvWs widget allows plotting points, among other useful things. It is quite important to note that
the top-left of the canvas is the origin with the coordinates (0,0). It is possible to shift the origin, but this
is beyond the scope of this lesson.

Continuing with the strategy of implementing a class that inherits from a Tkinter widget, we'll structure
this example such that our user-defined class, Points, inherits from Tkinter's Canvas class. Since some
of the points that will be plotted are random (that is, with random x- and y-coordinates), the randint

function of Python's random class will be used. For flexibility, several constants will be defined: the
width and height of the window, the various colors that points can be plotted in, the radius of the points,
and the total number of points to plot. Structuring the program in this way will make it very easy to
quickly test the program with different parameters.

Gourd, O'Neal 13 Last modified: 25 Jan 2018

��

Let's take a look at the source code:

By default, the width and height of the main window is defined to be 400x400 pixels. Knowing that the
top-left of the canvas is the origin, then the bottom-right must have the coordinates (399,399). The
points are plotted in four colors: black, red, green, and blue. Using the CanvWs class, points are drawn
as ovals. An oval is specified by a rectangular bounding box (specifically by its top-left and bottom-
right coordinates). If these coordinates are the same, the the oval is just a point. You will see how the
constant POINT_RADIUS will be used in a later example. Finally, 2,500 points are plotted.

The main part of the program (at the bottom of the source code) should be familiar. There are, however,
two new statements. The first sets the width and height of the window (collectively known as the
window's geometry):

window.geometry("{}x{}".format(WIDTH, HEIGHT))

This statement sets the window's dimensions to the values of the constants WIDTH and HEIGHT. The

second statement sets the window's title (the text at the top of the window):
window.title("Check out these points!")

The final three statements create the GUI, plot the points, and display the GUI on the desktop.

Gourd, O'Neal 14 Last modified: 25 Jan 2018

��

Let's take a look at the Points class:
 1: class Points(Canvas):
 2: def __init__(self, master):
 3: Canvas.__init__(self, master, bg="white")
 4: self.pack(fill=BOTH, expand=1)

 5: def plotPoints(self, n):
 6: for i in range(WIDTH):
 7: self.plot(i, i)
 8: self.plot(WIDTH - i - 1, i)
 9: for i in range(n):
10: x = randint(0, WIDTH - 1)
11: y = randint(0, HEIGHT - 1)
12: self.plot(x, y)

13: def plot(self, x, y):
14: color = POINT_COLORS[randint(0,\
15: len(POINT_COLORS) - 1)]
16: self.create_oval(x, y, x + POINT_RADIUS * 2,\
17: y + POINT_RADIUS * 2, outline=color)

The constructor of the Points class first calls the constructor of its superclass, Tkinter's Canvas class.
Note that the constructor can take various configuration parameters. In this case, the background is
additionally set to white. The canvas is then configured to expand horizontally and vertically to fill the
main window (i.e., it will expand to fit in the 400x400 pixel window).

The plotPoints function does the bulk of generating the points to plot. The first part of the code (in

lines 6 through 8) generates the set of points required to produce an X shape in the GUI. The variable i
iterates from 0 through 399 (all valid x- and y- coordinate locations on the canvas). The first set of
points generated have matching coordinates (e.g., (0,0), (1,1), (2,2), and so on). This forms the set of
points from the top-left to the bottom-right of the canvas. The second set of points generated have
opposite coordinates with respect to the width of the canvas. That is, when the x-component is 0, the y-
component is 399; when the x-component is 1, the y-component is 398; and so on. This forms the set of
points from the bottom-left to the top-right of the canvas.

The second part of the plotPoints function (in lines 9 through 12) generates n random points (2,500

in the case of the program above). Recall that the randint function takes a closed interval. That is,

the first and last parameters passed in to the function express the valid range of random integers to
generate, inclusive of the low and high values.

Finally, the plot function (in lines 13 through 17) actually plots the points on the canvas. First, in lines

14 and 15, a color is randomly selected from the list of colors that was defined as a constant near the top
of the program. Next, an oval is drawn on the canvas within the specified bounding box. With the
current set of parameters, the oval is just a point with no radius. The oval is drawn in the randomly
selected color by specifying its outline to be of that color.

Gourd, O'Neal 15 Last modified: 25 Jan 2018

���

We can observe the behavior of the create_oval function in the CanvWs class a bit more by

changing the radius of the points to something larger (say, 2) by modifying the POINT_RADIUS

constant at the top of the program as follows:
POINT_RADIUS = 2

The output of the program looks a bit different:

The “points” now have a radius that is greater than 0. The bounding box of a “point” is defined by the x-
and y-coordinates of the point and the point's radius. The top-left of the bounding box is just the x- and
y-coordinates of the point. The bottom-right takes the radius into account. That is, the coordinates of
the point really represent its top-left “corner”, while its bottom-right “corner” is adjusted to account for
the specified radius (twice, in fact, to make up the entire diameter). When we keep the radius the same
for both corners of the bounding box, the oval becomes a circle. In fact, a circle is just a special case of
an oval.

We can actually fill the points as well by slightly modifying the statement on lines 16 and 17:
16: self.create_oval(x, y, x + POINT_RADIUS * 2,\
17: y + POINT_RADIUS * 2, outline=color, fill=color)

We include a fill option that takes a color that the center of the oval will be filled with. Clearly, an oval
can have two different colors: one for its outline, and one for its “inside”.

Gourd, O'Neal 16 Last modified: 25 Jan 2018

���

Here's the output of the program with the fill option set as specified above:

Lastly, here's the output of the program with the fill option set to a random color, and the outline option
set to another random color (note that it is possible that both colors are the same):

Gourd, O'Neal 17 Last modified: 25 Jan 2018

���

The Science of Computing II Living with Cyber

Chaos Pillar: Algorithms

In this lesson, we are going to study chaos and order. While they intuitively mean the complete opposite
of each other, we will find out that there is in fact a very close relationship between the two. Often, if
you look closely enough at something apparently chaotic, you may find that there is some order to it
after all.

The coordinate system
A coordinate system allows us to represent positions of a specified dimension in a reproducible fashion.
This means that if someone describes a position to us using a coordinate system, we can accurately
represent that position. For example, the two-dimensional coordinate system allows us to represent
points on a flat plane (similar to the page of a book or a white board on a wall). The system is made up
of two axes that are perpendicular (i.e., at 90 degrees) to each other, and which meet at a point referred
to as the origin. The position of any point on that plane is described using two values that describe how
far away from the origin the given point is along both predefined axes. We typically refer to these axes
as X and Y, with the X-axis oriented horizontally (i.e., left-to-right), and the Y-axis oriented vertically
(i.e., up-to-down). Although this represents a way to locate points in two dimensions, we can extend this
to more dimensions. For example, we can add an axis oriented at an angle (technically, you can think of
it as being perpendicular to both the X- and Y-axes and going through the page or the white board). This
adds a third dimension to the coordinate system and allows the location of objects in three-dimensional
space.

Each axis in a coordinate system has values along it that demarcate one-dimensional positions.
Although we have freedom in what those values are, we typically center the origin at the X-value 0 and
the Y-value 0. We call this a point. The origin, then, rests at point (0, 0). The values along an axis
typically increase or decrease by 1. Here's an example of a two-dimensional coordinate system:

Gourd, Kiremire 1 Last modified: 08 Feb 2018

���

When specifying points on the coordinate system, we typically list the X-component first, followed by
the Y-component. That is, the point (2, 3), for example, has an X-value of 2 and a Y-value of 3. We
could plot this point as follows:

Activity 1: Plotting points

Can you place these five points in their proper positions on the coordinate system below: (3, 5), (5, -2),
(1, 2), (-3, -5), and (-4, 0)?

Gourd, Kiremire 2 Last modified: 08 Feb 2018

���

Another benefit of using the coordinate system for describing the position of different points is that it
allows us to easily calculate and plot a point in the middle of two points. We call such a point the
midpoint of the two points. If two points were drawn on a plain piece of paper, and we were asked to
mark the point in the exact middle of those two points, it would be a long and (many times) inaccurate
process. However, having the coordinates of the two points makes this simple. The midpoint of two
points is calculated by adding the corresponding coordinates and dividing by two to find the average of
each component. For example, the midpoint of the points (5, -2) and (1, 2) is given by the following
coordinates:

 (5+1

2
,
−2+2

2) = (3,0)

That is, the x- and y-components of each point are averaged to find the x- and y-components of the
midpoint. Similarly, the midpoint of the points (-3, -5) and (7, 3) is given by the following coordinates:

(−3+7

2
,
−5+3

2) = (2,−1)

Try to calculate the midpoints of the following point combinations in the space below:

Points (0, 0) and (4, 4):

Points (-3, 5) and (-1, -3):

Points (4, -4) and (-4, -4):

Now plot the given points and the calculated midpoints below:

Gourd, Kiremire 3 Last modified: 08 Feb 2018

���

The chaos game
The chaos game is an interesting (and, hopefully, fun) game that illustrates how seemingly random and
chaotic things can produce something orderly (and beautiful) over time. It works in a simple manner.
First, plot the three vertices of an equilateral triangle. An equilateral triangle is unique in that each of its
three sides are the same length, and each of its three vertices are equidistant to each other. Since the
internal angles of a triangle always sum to 180 degrees, each angle of an equilateral triangle is the same
(i.e., each angle is 60 degrees).

Here is an example of the vertices of an (almost) equilateral triangle:

Notice that the three vertices of the equilateral triangle are drawn on a coordinate system at the points
(0,0), (15,0) and (7.5,13). Although these points are not “perfectly” equidistant, they are nearly so (and
good enough for this example).

Second, randomly select two of the three vertices. Suppose that the top and bottom-right vertices are
randomly selected. Calculate the midpoint between these two vertices using the midpoint formula as
illustrated above. In general, given two points (x1, y1) and (x2, y2), the midpoint can be calculated as
follows:

(x
1
+x

2

2
,
y

1
+ y

2

2)
The midpoint of the top and bottom-right vertices at points (7.5, 13) and (15, 0) is calculated as follows:

(7.5+15

2
,
13+0

2) = (22.52
,
13

2) = (11.25,6.5)

The midpoint, (11.25, 6.5), is then plotted on the coordinate system.

Gourd, Kiremire 4 Last modified: 08 Feb 2018

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

���

The game now follows a repeatable pattern. The calculated midpoint at point (11.25, 6.5) is selected,
along with one randomly selected vertex of the equilateral triangle. Suppose that the top vertex at point
(7.5, 13) is randomly selected. A new midpoint is now calculated:

(11.25+7.5

2
,
6.5+13

2) = (18.752
,
19.5

2) = (9.375,9 .75)

this new midpoint is then plotted on the coordinate system, and the process continues (i.e., the latest
midpoint is selected, along with a randomly selected vertex of the equilateral triangle). Here is the
algorithm in pseudocode:

v1, v2, v3 ← three vertices of an equilateral triangle
plot v1, v2, and v3

p1, p2 ← two randomly selected vertices from v1, v2, and v3

m ← the midpoint of p1 and p2

plot m
repeat

v ← a randomly selected vertex from v1, v2, and v3

m' ← the midpoint of m and v
plot m'
m ← m'

until midpoints plotted >= 1500 or tired

By playing the chaos game for some time, what do you think will happen? Where do you think the
points will focus on the coordinate system? Will they collect in any one place at all?

Activity 2: The chaos game...manually

Let's play this game a little bit to see if anything can be gleaned (i.e., if anything reveals itself). Mainly,
we want to see if the points just randomly fill the coordinate system, or if they somehow produce
something orderly.

To obtain results quickly, let's use blank sheets of paper (or even better, transparencies). Everyone
should plot the exact same vertices of an equilateral triangle. From there, play the chaos game and plot
approximate midpoints. That is, estimate as best as possible (by looking) where the midpoint should be
plotted. Remember that, to plot the first midpoint, two random vertices are selected. From that point
on, the last plotted midpoint and one randomly selected vertex is used to compute the next midpoint.

Each student should repeat this process on his/her own individual paper or transparency at least 25
times. It's best to plot at least 100 midpoints. The paper or transparency can then be combined with
those of the other students to see what (if anything) is formed. If using transparencies, simply lay them
on top of each other, aligning the vertices. The result should be clearly visible. If using paper, the
procedure is the same; however, you will need to hold the stack of paper to the light (note that it may be
difficult to see all of the points).

So what is the result?

Gourd, Kiremire 5 Last modified: 08 Feb 2018

���

Did you know?

For any pattern to be revealed, a single person would have to plot thousands of points (which would
take a really long time). There is a whole branch of computer science that deals with making computers
faster, particularly for large tasks. One of the techniques that addresses this involves dividing tasks so
that small sub-tasks are done concurrently (i.e., at the same time). This field is called high
performance computing, and the technique employed is called parallelism.

Activity 3: The chaos game...automated

As you can see, it takes a lot of points to plot anything reasonable. That is, in order to actually see if
anything orderly is produced when playing the chaos game, a lot of midpoints must be calculated and
plotted.

There are also a lot of other interesting things that can be tried. For example, what would happen if the
three vertices were not equidistant; that is, what if the triangle was different? What if we plotted a
square instead (i.e., four vertices instead of three)? What about a pentagon? What would happen if,
instead of plotting midpoints, points at varying distances were plotted instead. For example, would the
result be different if a three-fourths point was plotted instead each time (i.e., instead of 50% of the
distance to the randomly selected vertex, 75% of the distance). What about 10% of the distance? What
would happen if there was an additional rotation about the randomly selected vertex? That is, what
would be the result if some midpoint (or other distance) were calculated and then rotated about the
vertex some number of degrees (some angle)?

These are all interesting questions that may result in absolute randomness (or perhaps not!). It would be
quite difficult to try these manually. Why not automate this process? A frequent task of computing
professionals is to automate things that tend to be repeated. To illustrate a number of changes to the
chaos game in a configurable manner, a simple application has been created to test out all of the
options.

The goal of this activity is to play around with this application to see how changes to the chaos game
affect the outcome. Try your hand at it!

Fractals
By now, you should have noticed that the result of the original chaos game (i.e., three vertices of an
equilateral and repeatedly plotting midpoints) results in a beautiful triangular shape. In fact, this shape
has an interesting property: it has its pattern repeated over and over. It's as if we could zoom in forever
and obtain the same pattern! This property is found in fractals. This particular fractal has a name: the
Sierpinski Triangle.

A fractal is a geometric shape that can be (infinitely) broken down into similar parts. This means that it
is made up of many parts that are just smaller versions of the whole thing. And these smaller parts are
then made up of even smaller versions of the whole thing. And this goes on infinitely (well, basically).
Of course, our eyes can't see this going on infinitely because things get too small.

Randomness and probability
In the chaos game, random vertices of an equilateral were repeatedly selected. What does random mean
exactly? We have seen that there is sometimes order in chaos if you look long and close enough. That

Gourd, Kiremire 6 Last modified: 08 Feb 2018

���

being said, there are things that seemingly happen in a haphazard manner, have no predictable pattern,
and are not predetermined. Such things are called random. Think of selecting one of the three vertices.
We have no way of predicting which vertex will be selected. Any one could be selected at each
iteration. Think of rolling a die. There is no way to predict which number will be rolled next (other than
to say that it will be between 1 and 6 inclusive).

Even with random things, human beings have come up with a way of measuring the randomness, and
that way is called probability. Probability is a way of expressing the knowledge that something will
happen. If something is definitely going to happen (i.e., it's absolute certainty), it is said to have a
probability of 1. If something is definitely not going to happen (i.e., it's an impossibility), it has a
probability of 0. Of course, there are an infinite amount of values in between 0 and 1. That is, the
probability that something could happen can be stated as a value between 0 and 1.

Formally, probability is defined as the ratio of the number of ways of achieving success to the total
number of possible outcomes. For example, consider the flipping of a coin. There are two possibilities
when flipping a coin: either heads or tails. So there are two possible outcomes. The probability of
landing on heads when flipping a coin is then 1/2. Why? The only way to land on heads is, well, to flip
heads. That is, there is only one way to achieving success. Since there are two possible outcomes when
flipping a coin, the probability of landing on heads is therefore 1/2 (one way of achieving success out of
two possible outcomes). Similarly, the probability of landing on tails when flipping a coin is also 1/2.

What is the probability of picking the top vertex in the chaos game? There's only one way to do so out
of three possible vertices. Therefore, the probability is 1/3.

Let's go back to rolling a typical (six-sided) die. What is the probability that a three is rolled? Rolling a
three represents the only way to achieve success. There are six possible rolls of the die. Therefore, the
probability of rolling a three is 1/6.

What is the probability that an even number is rolled? Well, how many ways are there of achieving
success? That is, how many ways can an even number be rolled? Three (rolling a two, four, or six).
The possible outcomes are, of course, rolling a one through six. So the probability of rolling an even
number is 3/6 = 1/2.

What is the probability that a number less than six is rolled? There are five ways to roll a number less
than six. There are six possible rolls of a die. The probability is therefore 5/6.

What is the probability of rolling two die and getting a total of 7? This one is a bit tricky! We'll discuss
this later (but if you want to know, it's 1/6).

Gourd, Kiremire 7 Last modified: 08 Feb 2018

���

Activity 4: Heads and tails...sort of

For this activity, we will repeatedly flip two coins simultaneously and record the results. The two coins
can either both be heads, both be tails, or they can be different (i.e., one is heads and one is tails). So
there are three possible outcomes to this game. The probability of both coins landing on heads is
therefore 1/3, both landing on tails is also 1/3, and one landing on heads and the other on tails is also
1/3.

To make this interesting, let's make it a game. If both coins land on heads, all of the students seated in
the left half of the class (on the left side from the prof's perspective) get a point. If both coins land on
tails, all of the students seated in the right side of the class get a point. If one coin lands on heads and
the other lands on tails, the prof gets a point. The group (or individual) with the most points at the end
of some number of flips (say, 15) wins.

Record the results below:

Left Right Prof

Over time, you will find that the students lose more often. It appears that the heads and tails
combination happens significantly more often than initially thought. In fact, the previously calculated
probabilities (each 1/3) seem incorrect.

The purpose of this activity is to show that perceived probabilities are often different from actual
probabilities (i.e., humans are not always so good at estimating probabilities). Think of it like this:
there is only one way of both coins landing on heads. There is only one way of both coins landing on
tails. Contrary to what was previously assumed, there are two ways of ending up with one coin landing
on heads and the other landing on tails: the first coin can be heads and the second coin can be tails, or
the first coin can be tails and the second coin can be heads! In fact, there are a total of four possible
outcomes. The flipping of two coins can then be shown in the following table:

Coin 1 Coin 2

heads heads
heads tails
tails heads
tails tails

The probability of both coins landing on heads is 1/4 (one possible way of achieving success out of four
possible outcomes as show above). The probability of both coins landing on tails is also 1/4. But the
probability of one coin landing on heads and the other landing on tails is actually 2/4 = 1/2! The prof
wins 50% of the time! Another way of saying this is that the prof wins twice as much as either group of
students! Ka-ching!

When you realize how rigged this simple game is, you can begin to think about how even more rigged
other games (such as slot machines, the lottery, etc) are...

Gourd, Kiremire 8 Last modified: 08 Feb 2018

���

Try to calculate the probability of flipping three coins and getting three heads. Or three tails. Or one
heads and two tails. Or one tails and two heads. To assist you, list all of the possible combinations of
flipping three coins in the table below:

Coin 1 Coin 2 Coin 3

Probability of ending up with three heads:

Probability of ending up with three tails:

Probability of ending up with one heads and two tails:

Probability of ending up with one tails and two heads:

Random number generators
In the last RPi activity (titled My Binary Addiction...Reloaded), you may have noticed the use of a
library that allowed the generation of random numbers. In the activity, it was used to generate random
bits (0 or 1) for each of the two 8-bit numbers (in order to generate two random 8-bit numbers). The
library was called random and was imported as follows:

from random import randint

The function randint was then used to generate the random numbers. As mentioned earlier in this

lesson, a truly random event has no predictable pattern. Unfortunately, there is no easy way for that to
happen using a computer, even for a task as simple as selecting random numbers within a specific range.
As a solution, computers typically use a pseudo-random process to create random numbers in a range.

Definition: A pseudo-random process is one that appears to be random but is technically deterministic
in nature. This means that the process looks completely random, and yet its pattern is predictable and
can be reproduced exactly.

When tasked with creating a random number (or group of numbers), computers typically use a pseudo-
random process to produce that number. This means that, given enough generated numbers, one can
observe that the created numbers follow a certain sequence. For most purposes, however, the amount of
numbers one would require to observe that the pattern is predictable is too large (so the numbers seem
random).

For most cases, pseudo-random numbers are adequate and even beneficial. How? For instance, often
researchers replicate experiments in order to confirm (or refute) experiments performed by peers. For a

Gourd, Kiremire 9 Last modified: 08 Feb 2018

���

scientist to make any claim about any experiments carried out, enough information for someone else to
reproduce those same results with an experiment of their own must be provided. When a random
number (or list of random numbers) is used in an experiment, there would be no way of replicating those
exact numbers (and therefore obtaining the same results as in the original experiment). However, since
computers produce pseudo-random numbers (which can be replicated exactly), it allows other
researchers to carry out their own versions of the original experiment and crosscheck to see if the results
are identical.

In order to actually generate repeatable (even predictable) patterns of random numbers, most pseudo-
random number generators can be configured or initialized with a seed. A seed is just a number that is
used to initialize a pseudo-random number generator. Most generators use the current time (to the
second) as the seed. Clearly, this means that generating a sequence of random numbers will be different
each time (since time moves forward continuously). We can, however, specify a seed of our own so that
the pseudo-random number generator will always provide the same sequence of numbers!

Activity 5: Seeded pseudo-random numbers

Let's create a simple program generates 100 pseudo-random numbers (in the range 0-99) twice:
from random import randint

for i in range(1, 101):
print "{}\t".format(randint(0, 99)),
if (i % 10 == 0):

print
print
for i in range(1, 101):

print "{}\t".format(randint(0, 99)),
if (i % 10 == 0):

print

Note the use of "\t" (which prints a tab and is typically eight spaces in width). Characters that begin

with a backslash (\) are known as escape characters. Escape characters typically allow the
representation of unprintable characters (such as a tab, newline, carriage return, etc). Most general
purpose programming languages (including Python) support these unprintable characters. Here are
some common ones:

\n Linefeed (like pressing Enter)

\t Horizontal tab

Note that there are many others, some of which are even programming language specific.

The program above first displays 100 random integers in the range 0-99, and formats them such that ten
integers are displayed on each line (i.e., ten rows of ten columns). They are aligned at the columns via a
horizontal tab that follows each integer. Note the comma at the end of the print statement. This
instructs Python to omit a typically default linefeed at the end of the print statement. Once ten integers
have been displayed on a single line (i.e., i % 10 == 0), a blank line is added (via the solitary print

statement). The program then displays another 100 random integers in the same manner. Note the
variety (and randomness) of the generated integers, although generating 200 integers in the range 0-99
will undoubtedly produce duplicates.

Gourd, Kiremire 10 Last modified: 08 Feb 2018

���

In the above example, the pseudo-random number generator was seeded with the current time (by
default since no numeric seed was provided). Let's modify the algorithm and use an identical (but
specified) seed value for each 100 random integers:

from random import randint, seed

seed(123456)
for i in range(1, 101):

print "{}\t".format(randint(0, 99)),
if (i % 10 == 0):

print
print
seed(123456)
for i in range(1, 101):

print "{}\t".format(randint(0, 99)),
if (i % 10 == 0):

print

In this case, the numeric value 123456 is used as the seed to generate both groups of 100 integers.
Technically, the seed could be any value (e.g., 0, some variable containing a value, even the
mathematical constant pi). In fact, we could have randomly generated a seed!

seed(randint(0, 65535))

Now that you have seen how to use Python to generate pseudo-random integers, let's try to write
programs that implement some of the activities shown earlier in this lesson.

Activity 6: Rolling two dice

Earlier we discussed rolling a single die and the associated probabilities of each possible roll. Then, we
asked what the probability of rolling two dice and getting a total of 7. Let's try to write a Python
program that iterates through all of the possibilities when rolling two dice:

Gourd, Kiremire 11 Last modified: 08 Feb 2018

���

The comments in the source code above pretty well explain the statements. Note the last line of the
program; specifically, the third parameter that replaces the formatting braces: dice_sums[i] *

1.0 / sum(dice_sums). This expression takes the i-th sum frequency and converts it to a

floating point number by multiplying it by 1.0. This product is then divided by the total number of sum
frequencies (the function sum() calculates the sum of a list – in this case, the list dice_sums). The

conversion of one of the terms to floating point is necessary to ultimately produce a floating point
division.

Gourd, Kiremire 12 Last modified: 08 Feb 2018

���

And here is the output of the code:

Gourd, Kiremire 13 Last modified: 08 Feb 2018

���

The number of total sums possible is 36. We can calculate this by taking the sum of the frequencies (1
+ 2 + 3 + 4 + 5 + 6 + 5 + 4 + 3 + 2 + 1 = 36). Since there are six rolls that sum to 7, then the probability
of rolling two dice and getting a 7 is 6/36 = 1/6. In fact, the probability of rolling two dice and getting a
7 is higher than anything else!

Now let's try to roll two dice many times and see what results we end up with. Perhaps the frequencies
of the sums will match the frequencies shown above! Here's the code:

Again, the comments should be adequate to explain the source code. Much of the code is similar to the
last program.

Gourd, Kiremire 14 Last modified: 08 Feb 2018

���

And here is the output (with 5,000 rolls):

Note the probabilities. Although they are not exactly the same as calculated before, they are very
similar! More accurate results would be possible with a much higher number of rolls (try one million!).

Gourd, Kiremire 15 Last modified: 08 Feb 2018

���

The Science of Computing II Living with Cyber

Recursion Pillar: Algorithms

The Towers of Hanoi
Although a lot of problems exist, it is often fun (and interesting) to study games to see if we can glean
anything of value from them beyond just entertainment. In some cases, we actually learn useful tactics
that can help us solve real problems later on. The Towers of Hanoi is an old, simple game (in principle).
You are presented with three pegs (or towers) on which you can move various discs around. Initially,
the discs rest on a single tower (the largest is on the bottom and the smallest is on the top). The
objective is to move the discs from this source tower to some destination tower. But there are rules:

1. Only a single disc can be moved at a time;
2. No larger disc may ever be placed on top of a smaller disc; and
3. Moving a single disc constitutes one move.

The objective, of course, is to move all of the discs from a source tower to a destination tower in the
minimum number of moves. Here is an example of what the start of the game looks like (with three
discs):

The game is interesting because it presents us with an optimization problem. That is, the goal is not just
to find a solution (i.e., to successfully move the discs from the source tower on the left to the destination
tower on the right), but to find one that is optimal (i.e., that results in some minimum number of moves).
It is quite easy to eventually find a solution in, say, 100 moves. In fact, we can probably make mostly
random moves and get there within 100.

The minimum number of moves required to solve the Towers of Hanoi with three discs turns out to be
seven! In fact, here are the moves:

Gourd, Kiremire 1

���

Gourd, Kiremire 2

���

Trying our hand at solving the puzzle with one, two, three discs, and so on, may lead to some idea of
where to place the first disc. We also notice a pattern; however, it is not so straightforward. In fact,
attempting to design an algorithm to solve the puzzle would most likely be difficult at this point. It
would undoubtedly involve repetition, and breaking down the problem so that it can be reasoned about
and an algorithm designed is not as simple as it may initially appear.

The simplest case of the Towers of Hanoi is one with a single disc. The minimum number of moves
required in this case is, trivially, one (move the disc from the source tower to the destination tower). We
can create a table that, given an initial number of discs, provides the minimum number of moves
required for a Towers of Hanoi problem with that many discs:

Number of discs Minimum number of moves

1 1

2 3

3 7

4 15

5 31

6 63

In the general case of n discs, how many moves would it minimally take? Do you see a pattern? A
quick look indicates that the minimum number of moves required appears to double each time a disc is
added. For example, one disc requires one move. Two discs requires three moves (a bit more than
double the number of moves required for a single disc). Three discs requires seven moves (a bit more
than double the number of moves required for two discs). And so on.

It appears that the minimum number of moves required can be represented as a power of two of the
number of discs. In the case of a single disc, we have: 21 = 2; and 2 – 1 = 1. In this case, that's 21 – 1
moves (minimally). In the case of two discs, we have: 22 = 4; and 4 – 1 = 3. That's 22 – 1 moves. And
in the case of three discs, we have: 23 = 8; and 8 – 1 = 7. That's 23 – 1 moves. Generalizing this for n
discs, we simply have 2n – 1 moves (minimally)! Here's the updated table:

Number of discs Minimum number of moves

1 1

2 3

3 7

4 15

5 31

6 63

n 2n – 1

Let's suppose that it takes 1 second for you to make a single move. How long would it take to complete
the puzzle with six discs? Since it takes 63 moves to complete the puzzle with six discs, and each move

Gourd, Kiremire 3

���

takes 1 second, then it would take slightly over one minute to complete the puzzle. Since the number of
moves effectively doubles each time a disc is added to the problem, so does the time it takes to solve the
puzzle! For example, it would take approximately two minutes to solve a puzzle with seven discs,
approximately 16 minutes for a puzzle with ten discs, and approximately 11 days for a puzzle with 20
discs!

Suppose that your computer could make 500 million moves per second (which is probably about right!).
A quick calculation shows us that the Towers of Hanoi with 30 discs would take a little over two
seconds. Again, it doubles with every additional disc. For example, it would take your computer
approximately four seconds for a puzzle with 31 discs, approximately one minute for puzzle with 35
discs, and approximately one hour for a puzzle with 41 discs. And it would take almost one month for a
puzzle with 50 discs! One month for a fast computer that can make 500 million moves per second!

It is said that a group of monks are working to solve the Towers of Hanoi with 64 golden disks. They
believe that, once solved, it will be the end of the world. They move the discs by hand. Think of the
size of the discs to be able to stack 64 of them (golden ones, mind you) on a single tower! They must
require pulleys, ropes, many monks for each move, and so on. Suppose that they can make one move
every ten minutes (which is quite fast, considering). It would take them over 350 billion millennia
(that's over 350 billion thousand years) to solve the puzzle in the minimum ~18.4 quintillion moves! I'm
not worried...

Breaking problems down
Consider a simple question: Let's say that there are ten students in the class. Suppose that some activity
requires pairing students in groups of two. How many unique groups could be generated? That is, how
many ways could the class be split up into groups of two? Although not particularly difficult, the answer
is not obvious at first. A strategy may be to simplify the problem into a trivial case, and build up from
there. We could do this by first considering a class of two students. How many groups of two could be
formed? Clearly, only one. There is only one way to group two students in groups of two. Let's add a
third student. In fact, let's consider the three students, S1, S2, and S3. How many ways could groups of
two be formed from these three students? Let's try to enumerate them all:

1. S1 and S2;
2. S1 and S3; and
3. S2 and S3.

So there are three ways to form groups of two from three total students. What about four total students,
S1 through S4?

1. S1 and S2;
2. S1 and S3;
3. S1 and S4;
4. S2 and S3;
5. S2 and S4; and
6. S3 and S4.

There are six ways to form groups of two from four total students. One more: what about five total
student, S1 through S5?

1. S1 and S2;
2. S1 and S3;
3. S1 and S4;
4. S1 and S5;

Gourd, Kiremire 4

���

5. S2 and S3;
6. S2 and S4;
7. S2 and S5;
8. S3 and S4;
9. S3 and S5; and
10. S4 and S5.

There are ten ways to form groups of two from five total students. How does this scale to more
students? Take a look at this table (note that there are exactly zero ways to form groups of two from a
single student!):

Students Groups

1 0

2 1

3 3

4 6

5 10

6 15

7 21

8 28

9 36

10 ?

Can you guess the number of groups of two that can be formed with ten students? Can you see a pattern
that gives the number of groups from some number of students? Take a closer look at a subset of the
table above:

Students Groups

1 0

2 1

3 3

For the case of three students, it seems that we can calculate the number of groups of two that can be
formed as the sum of the number of groups of two that can be formed with two students plus those two
students (i.e., 1 + 2 = 3). Let's see if this continues to work out with four students:

Students Groups

1 0

2 1

3 3

Gourd, Kiremire 5

���

4 6

To calculate how many groups of two can be formed with four students, we can sum the number of
students in the row above (3) with the number of groups that can be formed with that many students (3):
(3 + 3 = 6).

And one more:

Students Groups

1 0

2 1

3 3

4 6

5 10

The number of groups of two that can be formed with five students is the number of groups of two that
can be formed with four students (6) plus those four students (4): (6 + 4 = 10). And now, we can
calculate the number of groups of two that can be formed with 10 students:

Students Groups

1 0

2 1

3 3

4 6

5 10

6 15

7 21

8 28

9 36

10 45

How can we generalize this for any number of students (say, n)? It turns out that we can use a
recurrence relation to describe this behavior.

Definition: A recurrence relation is an equation that recursively defines a sequence. That is, each
term in the sequence is defined as a function of the preceding terms in some way.

For example, in the table above the number of groups of two that can be formed with ten students is a
function of the number of groups of two that can be formed with nine students. And that itself is a
function of the number of groups of two that can be formed with eight students. And this goes on.
Ultimately, however, we can establish some base (or trivial) case that is immediately answerable. For

Gourd, Kiremire 6

���

example, we can say (without needing to think about it too much) that no groups of two can be formed
with one student. In fact, this is the simplest case for this problem. It is the base (or trivial) case.

Recurrence relations must ensure that, at some point, the base case is achievable. That is, the problem
must be repeatedly broken down into smaller and smaller versions of itself, eventually reaching the base
case. The solution to a specific term in the sequence is then built back up, from the base case!
Algorithms that repeatedly break something down until a base case is reached and build a solution back
up are known as divide and conquer algorithms.

For the groups of students problem stated above, we can define a function, G(n), that calculates the
number of groups of two that can be formed from n total students. We could express this function as
follows:

G(n)={0 , if n=1

(n−1)+G(n−1) , otherwise

We read this as follows: the number of groups of two that can be formed from n students is:
• 0, if the number of students, n, is 1; or

• n minus 1 plus the number of groups of two that can be formed from n minus 1 students,

otherwise.

Although fully understanding this at this point is not necessary, note how the second part of the function
is dependent on the function itself. That is, the otherwise part breaks the problem down a bit into a
smaller version of itself via G(n – 1). The interesting thing is that the problem can be broken down
enough times to ensure that the base case is eventually reached! If n is some positive number greater
than 0, the recurrence relation will break down the problem until n is 1, at which point the base case is
reached (and everything stops).

Formally, the equation above is known as a recurrence relation because it is defined in terms of itself. It
also has two separate parts, and the result depends on the input value. In mathematics, we refer to this
type of function as a piecewise function. This particular function has two pieces:

• The first results in 0, but only if the input value, n, is 1; and

• The second results in a broken down version of itself, otherwise (i.e., for values of n that are not

1).

Recursion
In computer science, recursion is usually understood to be the idea of a subprogram repeatedly calling
itself. Of course, at some point this repeated calling has to stop (otherwise, it would be an infinite loop).
In a previous lesson, we envisioned recursion as a spiral of sorts. Each time a subprogram calls itself,
we descend down a level of the spiral until we eventually reach the bottom (some base or trivial case).
At that point, execution begins to unwind as the subprogram calls complete and we retrace our path back
up through the various levels until finally arriving at the top level where execution began. This is when
the solution is built back up. Generally, however, recursion is just another name for recurrence relation.

Definition: Recursion is the process of breaking down a problem into smaller and smaller versions of
itself until a base or trivial case is reached. Recursion must have two parts: (1) a base or trivial case
that provides an immediate answer to some specified input; and (2) a recursive step that breaks the
problem down into a smaller version of itself.

Gourd, Kiremire 7

���

Recursion is the programming equivalent of mathematical induction (which is just defining something in
terms of itself). To illustrate this more clearly, let's take a look at a simple algorithm that computes a
base to some power (i.e., xy):

compute 2^10

x = 2

y = 10

pow = 1

for i in range(0, y):

pow *= x

print "{}^{} = {}".format(x, y, pow)

This example computes 210 (1024). It basically multiplies one by the base (x) y times. When the base is
two and the exponent is ten, it multiples one by two, ten times (i.e., 1 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 *2 *
2).

To convert this iterative algorithm to a recursive one, we must first define the recurrence relation that
solves the problem. First, the base or trivial case. For exponents, that's simple: x0 = 1. That is, anything
raised to the power zero is always one. The recursive step takes more thought. A hint is to observe how
powers can be broken down. For example: 22 = 2 * 2. Extending this: 23 = 2 * 2 * 2. This can be
rewritten as 23 = 2 * 22. We can extend this further: 24 = 2 * 23. Notice how the exponents can be
repeatedly broken down into smaller exponents. The trick is to see if the base case is eventually
reached.

Let's take a look at the first example again: 22 = 2 * 2. Technically, 22 = 2 * 21. And 21 = 2 * 20! So the
base case can eventually be reached. We can now formally define a recurrence relation for some
function Pow(x, y) as follows:

Pow(x , y)={1 , if y=0

x∗Pow(x , y−1) , otherwise

Let's see if it works with an example: 25 (which is 32). In the recurrence relation above, we would call
the function with Pow(2, 5). Since y is not zero, the second (recursive) case is applied resulting in 2 *
Pow(2, 4). To calculate Pow(2, 4), the second case is applied again resulting in 2 * Pow(2, 3). And to
calculate Pow(2, 3), we apply the second case another time which results in 2 * Pow(2, 2). We have to
apply the second case a few more times: first with Pow(2, 2) which results in 2 * Pow(2, 1), and lastly
with Pow(2, 1) which results in 2 * Pow(2, 0). At this point, the first (base) case is applied (since y is 0)
resulting in 1. We can now build it all back up: 1 * 2 * 2 * 2 * 2 * 2 = 32.

Perhaps this is best illustrated as follows; first with the recursive calls:
Pow(2, 5)

2 * Pow(2, 4)
2 * Pow(2, 3)

2 * Pow(2, 2)
2 * Pow(2, 1)

2 * Pow(2, 0)

Gourd, Kiremire 8

���

Now let's build the result back up:
Pow(2, 5) 32

2 * Pow(2, 4) 16
2 * Pow(2, 3) 8

2 * Pow(2, 2) 4
2 * Pow(2, 1) 2

2 * Pow(2, 0) 1

Notice how, at each step in the building back up, the result of the recursive calls combine to form simple
arithmetic problems (e.g., 2 * Pow(2, 0) becomes 2 * 1 which equals 2). The arithmetic results form the
answer to a previous recursive call (which is then replaced to form another simple arithmetic problem).

Here's another interesting mathematical function: the factorial. Let's first look at its recursive definition:

Fact (n)={1 , if n=0

n∗Fact(n−1) , otherwise

The factorial function repeatedly multiplies some integer by all the integers below it (up to 1). For
example, five factorial (referred to as 5!) = 5 * 4 * 3 * 2 * 1 = 120. To see how this works, let's take a
look at some examples:

5! = 5 * 4 * 3 * 2 * 1 = 120
4! = 4 * 3 * 2 * 1 = 24
3! = 3 * 2 * 1 = 6
2! = 2 * 1 = 2
1! = 1

Note how 4! is embedded within 5!:
5! = 5 * 4 * 3 * 2 * 1

And how 3! is embedded within 4!:
4! = 4 * 3 * 2 * 1

And so on. In fact, we could say that 5! = 5 * 4!, and 4! = 4 * 3!, and 3! = 3 * 2!, and so on. This
clearly breaks the problem down into smaller and smaller versions of itself. So what is the base case?
Perhaps it's just that 1! = 1. Although correct, mathematicians actually prefer 0! = 1 (as illustrated in the
recurrence relation above). So the breaking down occurs as follows:

5! = 5 * 4!
4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1!
1! = 1 * 0!
0! = 1

Gourd, Kiremire 9

���

And now we can implement a recursive factorial function as follows:
def fact(n):

if (n == 0):

return 1

else:

return n * fact(n - 1)

And to compute 5!:
print "5! = {}".format(fact(5))

Let's see how the recursion works as in the previous Pow example; first with the recursive calls:
fact(5)

5 * fact(4)
4 * fact(3)

3 * fact(2)
2 * fact(1)

1 * fact(0)

Next with the building back up:
fact(5) 120

5 * fact(4) 24
4 * fact(3) 6

3 * fact(2) 2
2 * fact(1) 1

1 * fact(0) 1

Did you know?

Although not always simple, any iterative algorithm can be converted to a recursive one, and vice
versa!

Try to implement an iterative factorial algorithm (in Python) in the space below:

Gourd, Kiremire 10

���

Another interesting mathematical function is one that generates the Fibonacci sequence. Although it has
been featured in a puzzle, no actual function was provided. Let's take a look at the Fibonacci sequence:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

A term in the sequence can be calculated as the sum of the two previous terms. For example, the
seventh term (8) is the sum of the fifth and sixth terms (3 and 5). Here's a recurrence relation for the
Fibonacci sequence:

Fib(n)={0 , if n=1

1 , if n=2

Fib (n−1)+Fib (n−2) , otherwise

Note that this recurrence relation has two base cases! This is necessary since the recursion requires the
sum of the two previous terms. The first term in the sequence, Fib(1), is 0 (the first base case). The
second term in the sequence, Fib(2), is 1 (the second base case). The remaining terms are calculated
recursively as the sum of the previous two terms, Fib(n – 1) + Fib(n – 2). Here's how the recursion
breaks down for Fib(6) (which equals 5). Since there are multiple branches of recursion (i.e., two parts
to each recursive call), we'll use a different method to show the recursion:

At the top, Fib(6) breaks down to Fib(5) + Fib(4). The figure then takes on an upside-down tree-like
structure. Note how, if flipped upside-down, the top would form a root. The root then splits into two
branches, each of which split into two more branches, and so on. The values at the bottom of the figure
form what are called leaves. These represent the base cases, all either Fib(1) or Fib(2). In a future
lesson, we will discuss trees more formally.

Gourd, Kiremire 11

Fib(6)

Fib(5) Fib(4)

Fib(2) Fib(1)

Fib(3) Fib(2) Fib(2) Fib(1) Fib(2) Fib(1)

Fib(4) Fib(3) Fib(3) Fib(2)

+

+ + +

+ +

+

���

We can build the result back up as follows:

The result (at the top) is, as expected, 5.

The Towers of Hanoi...Reloaded
As noted earlier, crafting an algorithm for this puzzle is not as simple as it sounds. In fact, it is quite
difficult to design an iterative algorithm for it. Let's see if we can use recursion to our advantage.
Consider the puzzle with three discs:

Suppose that the destination tower is the one on the right. The middle tower will be used as a spare. In
order to move all three discs from the source tower to the destination tower, we can think of first
needing to move two discs (the top two, in fact) from the source tower to the spare tower:

Clearly this is not possible since we cannot move two discs simultaneously; however, let's continue with
this train of thought for a moment. Supposing that we have successfully done this, then we would need
to move the single disc left on the source tower to the destination tower:

Gourd, Kiremire 12

Fib(6) 5

Fib(5) 3 Fib(4) 2

Fib(2) 1 Fib(1) 0

Fib(3) 1 Fib(2) 1 Fib(2) 1 Fib(1) 0 Fib(2) 1 Fib(1) 0

Fib(4) 2 Fib(3) 1 Fib(3) 1 Fib(2) 1

+

+ +

+

+

+

+

���

And all that would be left to do is to move the two discs that are on the spare tower over to the
destination tower:

Puzzle solved! However, as mentioned we cannot move two discs simultaneously. However, let's go
back to the original state:

Gourd, Kiremire 13

���

In order to move the two top discs from the source tower to the spare tower, we first need to move the
single top disc from the source tower to the destination tower:

We can then move the second disc from the source tower to the spare tower:

And we can finally move the small disc from the destination tower to the spare tower:

In a sense, the three disc puzzle (i.e., moving three discs from the source tower to the destination tower)
is a two-disc puzzle (moving the two top discs from the source tower to the spare tower), followed by a
one-disc puzzle (moving the largest disc from the source tower to the destination tower), and finished
with a two-disc puzzle (moving the two discs left on the spare tower to the destination tower).

But of course, the two-disc puzzles are simply three one-disc puzzles! And a one-disc puzzle is simple:
just move the disc from one tower to another. Moving one disc is, in fact, the base case of the Towers of
Hanoi! Moving more than one disc can be broken down as a sequence of three smaller puzzles as
follows:

1. Move all but the bottom disc from the source tower to the spare tower;
2. Move the largest disc from the source tower to the destination tower; and
3. Move the discs on the spare tower to the destination tower.

Gourd, Kiremire 14

���

Or in general, given n discs:
1. Move n – 1 discs from source to spare;
2. Move 1 disc from source to destination; and
3. Move n – 1 discs from spare to destination.

We can design a recursive algorithm in Python as follows:
def hanoi(n, src, dst, spr):

if (n == 1):

print "{} -> {}".format(src, dst)

else:

hanoi(n - 1, src, spr, dst)

hanoi(1, src, dst, spr)

hanoi(n - 1, spr, dst, src)

Note the parameters in the function hanoi. The variable n specifies the number of discs. The variables

src, dst, and spr refer to the three towers. We can execute the algorithm and call the hanoi function

(with three discs from a source tower A to a destination tower C using a spare tower B) as follows:
hanoi(3, "A", "C", "B")

Here is the output:

The recursive function does require a little bit of explanation. Let's take a look at the initial call to the
function again:

hanoi(3, "A", "C", "B")

When this call occurs, the actual parameters, 3, “A”, “C”, and “B”, are passed in (or mapped) to the
formal parameters, n, src, dst, and spr. To be clear, the source tower is A, and the destination tower is C.
The first part of the recursive function, representing the base case when n = 1, is clear: simply move the
single disc from src to dst. This is accomplished by displaying the move to the console:

print "{} -> {}".format(src, dst)

Gourd, Kiremire 15

���

If n > 1, the recursive step is applied:
hanoi(n - 1, src, spr, dst)

hanoi(1, src, dst, spr)

hanoi(n - 1, spr, dst, src)

That is, to move n discs from src to dst using spr, we must first move n – 1 discs from src to spr (using
dst as the temporary spare tower), then move one disc from src to dst, and finally move the n – 1 discs
moved previously from spr to dst (using src as the temporary spare tower). Let's look at the first call
only along with the function definition:

def hanoi(n, src, dst, spr):

...

hanoi(n - 1, src, spr, dst)

In this call, the actual parameter, n – 1, is mapped to the formal parameter, n. So whatever n is in the
function, when it is called again, it is with n – 1. Similarly, src is mapped to src (since moving n discs
from some source results in moving n – 1 discs from that source first). The n – 1 discs, however, are
moved to the spare tower (to get them out of the way). So the call maps spr as the actual parameter to
dst as the formal parameter. Lastly, dst is mapped to spr. That is, the destination tower is temporarily
used as the spare tower when moving the n – 1 discs out of the way.

Perhaps this is best viewed dynamically, as each call is made. Let's illustrate this with a simple puzzle
with two discs:

hanoi(2, "A", "C", "B")

This call results in the following variable values:

n src dst spr

2 A C B

The recursive step is then applied, which results in the following three recursive calls:
1 A B C

hanoi(n - 1, src, spr, dst)

A C B

hanoi(1, src, dst, spr)

1 B C A

hanoi(n - 1, spr, dst, src)

Since these are all one-disc puzzles, the base case is applied each time (which simply displays the move
to the console). The first recursive call results in the the following variable values:

n src dst spr

1 A B C

Gourd, Kiremire 16

���

It therefore displays the following move: A → B. The second recursive call results in the the following
variable values:

n src dst spr

1 A C B

It therefore displays the following move: A → C. The third recursive call results in the the following
variable values:

n src dst spr

1 B C A

It therefore displays the following move: B → C. The three moves do, in fact, solve the two-disc puzzle.
Note that the values for the three towers can be anything. The strings “A”, “B”, and “C” were used
above; however, the integers 1, 2, and 3 would work just as well. If we wish, we can display the moves
required for puzzles with one through four discs as follows:

for i in range(1, 5):

print "The Towers of Hanoi with {} disc(s):".format(i)

hanoi(i, "A", "C", "B")

print

The output of this modified algorithm is:

Gourd, Kiremire 17

���

The Science of Computing II Living with Cyber

High Level Data Structures Pillar: Data Structures

This lesson looks at the topic of data structures, which is concerned with the various ways that data can
be organized within a computer program. Specifically, four common “high level” data structures are
introduced: lists, stacks, queues, and trees. Each of these structures represents a way to organize data so
that it may be applied to solve certain problems in an efficient manner. Three of these structures (lists,
stacks, and queues) are linear in nature. That is, their items logically exist one after another in sequential
order. The tree structure is non-sequential, in that its contents can not be meaningfully represented by a
simple sequential listing.

Lists
When designing algorithms to solve computing problems, it is rare that we do not, to some degree, store
and manipulate data. Often, we need to store data in a list form. This has been observed in previous
lessons (e.g., searching a list for some value, sorting a list using the insertion sort, etc). In fact, we have
seen (and used) lists in Scratch and in Python to solve problems.

In general, a list groups values together in such a way that there is a first item in the list, a last item in
the list, and some number of items in the middle of the list. Accessing any individual item in the list is
permitted (using its position or index). There are generally two implementations of lists: array-based
lists and linked lists.

We have already seen arrays in a previous lesson; however, let's briefly review. Arrays are comparable
to a numbered list such as a grocery list, a class roster, or a set of numbered drawers. They are used to
store multiple instances of anything, as long as they are all of the same kind (i.e., all numbers, all letters,
all images, all books, etc). Imagine these things being in some sort of order (i.e., we have a first thing, a
last thing, and some number of things in between). The members of (or entries in) the array are called
elements.

The order in which elements are stored in an array is important. This is because very often a
programmer needs to access a specific element of an array, and in order to do that, its position relative to
the first element of the array must be known. The position of an element is also referred to as its
address, and the relative address (how far away from the first element it is) is called its index.

Again, the distinction between a value and its index is one that must be emphasized. A value refers to a
piece of data stored in the array, and its index is the position in the array where that value is stored. The
index represents where an element is, and the value represents what the element is. While the two are
related, each of them will be of different importance to us depending on the scenario we are trying to
solve.

Gourd, Kiremire, O'Neal 1 Last modified: 08 Jan 2018

item
1

item
2

item
3

item
4

item
5

item
6

item
7

item
8

item
n-1

item
n

...

contiguous memory locations

���

In most programming languages, arrays must be declared along with their capacity (i.e., the maximum
number of values that the array can contain). This is important because array elements are located in
contiguous memory locations (i.e., next to each other in memory). Therefore, an array's capacity is
required in order to properly allocate all of the contiguous memory locations needed. This does,
however, represent the array's weakness. If we know how many items we will store in the array, then
this is simple. But what if we don't? We may purposely overestimate, but this wastes memory. What if
we underestimate and fill the array? The cost of creating a new, larger array, and then duplicating the
existing array to this new array can be quite large. The need for specifying an array's capacity at
declaration time is what motivated a tweak on implementing lists in programming languages. The result
is the linked list.

Unlike arrays, linked lists can grow or shrink as needed. Individual elements in a linked list are not
necessarily stored in contiguous memory locations. The cost of this benefit is that some mechanism for
linking each element in the list must exist. Ultimately, this mechanism requires additional memory;
thus, linked lists require more space in memory than arrays do when storing the same data. However,
this is offset by the convenience of only storing what is needed in the list at any one time.

Since the elements in a linked list are not necessarily stored in contiguous memory locations, we must
somehow link the elements in the list to one another. This requires extending the concept of element to
include two components: actual data (i.e., some value) and a link to the next element in the list. This
extended definition makes up what is called a node. Linked lists are made up of nodes, each of which
stores data and a link to the next node in the linked list:

If each node in the list contains some data and a link to the next node, then we really only need to know
the location of the first node in order to process each element in the list. From the first node, we can
repeatedly following links to the next node, until the end of the list is reached:

Of course, it does not necessarily have to look so pretty. The linked list above is drawn so that each
element seems to be located in contiguous memory locations; however, we could just as easily have
drawn the linked list like this:

In this case, the first node is still the one all the way to the left. The last node, however, is now the third
from the left.

The first node in a linked list is known as its head. Knowing where the head is in a linked list is crucial.

Gourd, Kiremire, O'Neal 2 Last modified: 08 Jan 2018

data link

data data data data data

data data data data data

���

So how do we know when to stop when, for example, we process each element in the list? That is, how
do we know when we are at the last element in the list? The answer lies in the link component of the
node. For clarity, you should know that the last node in a linked list is known as the tail. The link
component of the tail of a linked list will always be nothing. In Python, we would say that its value
would be equal to None. In other programming languages, we sometimes refer to this as null. For

simplicity, the link component of the tail node is equivalent to 0.

So what does the link component of a node other than the tail actually store? It stores the memory
address of the next node in the list! Perhaps this is best explained by creating a linked list, step-by-step,
and showing what happens at each step. Let's insert the values 5, 9, 2, 6, and 1 into a linked list.
Inserting the value 5 first requires creating a new node with 5 as the data component and 0 as the link
component (by default):

Of course, this node must be stored somewhere in memory. Let's randomly pick the memory address
5B44 (in hexadecimal). In addition, since this is the only node in the linked list so far, then it is at its
head:

Suppose that inserting the value 9 creates a new node that is stored at memory address 5B46:

The nodes must now be linked. Since this new node belongs after the head of the list (i.e., it is the
second node inserted into the list), then we simply need to link the head to this new node as follows:

Gourd, Kiremire, O'Neal 3 Last modified: 08 Jan 2018

5 0

5 0

5B44

head

5 0

5B44

9 0

5B46

head

5 5B46

5B44

9 0

5B46

head

���

Notice how the link component of the head contains the memory address of the next node in the list.
This has the same effect as the following pictorial example:

Since we know where the head of the linked list is located (by definition), then we can reach the second
node by following the link (i.e., by moving the to memory address specified in the link component of the
node).

Inserting the value 2 is similar. Suppose that the new node containing this value is stored at memory
address 5B50:

Notice how the link component of the node containing the value 9 correctly links it to the newly inserted
node. Now let's insert the value 6. Suppose that the new node is stored at memory address 5B52:

Finally, let's insert the value 1. Suppose that the new node is stored at memory address 5B48:

Notice how we can start at the head of the linked list and follow the link components of each node, all
the way through the tail. We know to stop at the tail because its link component is 0. Pictorially, this
can be represented as follows:

Gourd, Kiremire, O'Neal 4 Last modified: 08 Jan 2018

5

5B44

9

5B46

head

5 5B46

5B44

9 5B50

5B46

2 5B52

5B50

5 5B46

5B44

9 5B50

5B46

2 0

5B50

head

6 0

5B52

6 0

5B52

5 5B46

5B44

9 5B50

5B46

2 5B52

5B50

5 5B46

5B44

9 5B50

5B46

2 5B52

5B50

head

1 0

5B48

6 0

5B52

6 5B48

5B52

5 5B46

5B44

9 5B50

5B46

2 5B52

5B50

5 5B46

5B44

9 5B50

5B46

2 5B52

5B50

head

5 5B46

5B44

9 5B50

5B46

2 5B52

5B50

6 0

5B52

5

5B44

9

5B46

2

5B50

6

5B52

1

5B48

head

���

Just like arrays, linked lists can be used to implement searching and sorting algorithms. Processing each
element is just as simple. Moving elements around, however, is a bit more complicated since it involves
rearranging the link components of nodes to reflect a potentially new ordering of the elements in the list.
For example, consider the problem of deleting the node containing the value 2:

Starting at the head, we see that the node containing the value 2 is the third node in the list. To remove
this node, we will need to change the node containing the value 9 (since it is linked to the node that we
wish to delete). The solution is to change the link component of this node so that it is equivalent to the
link component of the node that we wish to delete:

The node to be deleted is circled in red above. To remove it from the linked list, we simply need to copy
its link component to the node that precedes it, thereby rerouting around it. After this action, the result
is the following linked list (the grayed out node is no longer a part of the linked list):

Stacks
Stack data structures are used, among other things, to model the behavior of stacks of real-world
objects. In order to understand this structure let’s begin by thinking about a simple stack of blocks:

Gourd, Kiremire, O'Neal 5 Last modified: 08 Jan 2018

A

B

C

1 0

5B48

6 0

5B52

6 5B48

5B52

5 5B46

5B44

9 5B50

5B46

2 5B52

5B50

5 5B46

5B44

9 5B50

5B46

2 5B52

5B50

head

5 5B46

5B44

9 5B50

5B46

2 5B52

5B50

6 0

5B52

5 5B46

5B44

9 5B50

5B46

2 5B52

5B50

6 5B48

5B52

1 0

5B48

head

5 5B46

5B44

9 5B50

5B46

6 0

5B52

5 5B46

5B44

9 5B52

5B46

2 5B52

5B50

2 5B52

5B50

6 5B48

5B52

1 0

5B48

head

���

In this stack, C is the top block, B is beneath C, and A is the bottom block. Assuming that the blocks
were added one at a time, how must this stack have been built? First, the bottom block, A, must have
been set, then B would have been placed on top of A, and finally C would have been placed on top of B.
Note that the blocks must be added to the stack from bottom to top: A, then B, then C. The last block
placed on the stack will be the top block.

Now, let’s think about removing a block from the stack. As any child could demonstrate, the block that
is most easily accessible is the top block (C in this case). Removing C from the stack leaves us with B
sitting on top of A. It is interesting to note that the first item to be removed from the stack, C, was the
last item added to the stack (remember the order in which the blocks were added). In fact, assuming that
you don't cheat and grab an item from the middle of the stack, the last item added on the stack would
always be the first taken off. For this reason, stacks are known as Last-In, First-Out (LIFO) data
structures.

As mentioned earlier, the stack data structure models the behavior of real-world stacks of objects. The
two primary operations that can be applied to stack data structures are push and pop. The push
operator is used to add a new item onto the top of the stack. The pop operator is used to remove the top
item from the stack. Stack data structures do not support the removal of items from the middle of the
stack. The stack of real-world blocks shown above could be modeled by applying the following
operations to an initially empty stack data structure:

push A

push B

push C

The removal of C could subsequently be accomplished by issuing the pop command:
pop

To be more formal, the stack data structure can be defined as a specialized type of list (an ordered
sequence of items) in which all insertions to and deletions from the list take place at one end. The end
of the list where the insertions and deletions are performed is known as the top of the stack. Stacks are
usually drawn vertically, so that the item at top of the stack appears literally as the topmost item in the
structure; however, they could just as easily be drawn sideways or upside down.

In order to ensure that you have a clear understanding of the behavior of the stack data structure,
consider the following sequence of stack operations and pictorial representations of the stack that would
result after each operation is applied. Note again that the pop operation always removes the last item
placed on the top of the stack:

Now that you have some understanding of how stacks behave, it is natural to ask, “So what?” Why are

Gourd, Kiremire, O'Neal 6 Last modified: 08 Jan 2018

1 1

2

1

2

3

empty
stack

push 1 push 2 push 3 pop pop pop:
empty
stack

1

2

1

���

stacks of interest to computer scientists? In the real world, we routinely encounter stacks of objects
(e.g., CDs, dishes, bills). We use these stacks to temporarily hold objects until we are ready to use or
process them in some way. One important characteristic of all stacks (both the real-world type and their
software counterpart) is that, due to their LIFO nature, they reverse the order of the objects they hold.
For example, if you place three CDs in a stack, AC/DC, then Iron Maiden, then Justin Bieber, and then
play the top one, you will unfortunately be listening to Justin Bieber and not AC/DC. In everyday life,
we tend to use stacks in situations where order is unimportant (e.g., for holding identical, non-perishable
items like dinner plates).

In a similar manner, stack data structures are used by computer software to temporarily hold data objects
until they can be processed by the computer. However, instead of deemphasizing the LIFO nature of
stacks, in computing stacks tend to be used almost exclusively in situations where we specifically want
to process items in the opposite order than they were added to the structure.

One common use of stacks in computing is to manage the execution of interruptible tasks. The utility of
stacks for this purpose can easily be seen by a real-world analogy. Say that you are typing an English
paper (task one) and the phone rings. You pick up the phone (i.e., place task one on the stack of on hold
processes) and begin a conversation with a friend (task two). During this conversation you get a second
phone call, so you put your friend on hold (i.e., place task two on the stack of on hold processes) and
take a call from your mom (task three). After a brief talk with mom, you switch back to your friend (i.e.,
after task three completes, you pop task two off of the stack of on hold processes and restart it from the
point you left off). Finally, after a not-so-brief conversation with your friend, you return to your English
paper (i.e., after task two completes, you pop task one off of the stack of on hold processes and restart it
where you left off).

Note that in order to handle these interruptible tasks properly, a data structure such as a stack that
incorporates LIFO behavior must be employed.

Try your hand at pushing the letters of the word PUPILS, one letter at a time, to a stack in the space
below:

Gourd, Kiremire, O'Neal 7 Last modified: 08 Jan 2018

���

Now pop each letter off of the stack, one at a time, in the space below. While doing so, record each
popped letter to see the word formed after the pop operations are complete and the stack is empty again:

As you can see, a stack can easily reverse a word. We can also use a stack to match parentheses in, for
example, mathematical expressions. The basic idea is to scan through an expression, one character at a
time, from left-to-right. Left (or open) parentheses are pushed on the stack. Right (or close) parentheses
result in a pop (and a match of the left parenthesis that was just popped). Operators and operands are
ignored.

Take a look at the following expression and its resulting stack operations. To make it easier to follow,
we'll change the orientation of the stack so that the top is to the right:

a + b * (c + (d – e) / (f / g))

Input Operation Stack (top →)

a ignore

+ ignore

b ignore

* ignore

(push (

c ignore (

+ ignore (

(push ((

d ignore ((

Gourd, Kiremire, O'Neal 8 Last modified: 08 Jan 2018

���

Input Operation Stack (top →)

– ignore ((

e ignore ((

) pop (and match) (

/ ignore (

(push ((

f ignore ((

/ ignore ((

g ignore ((

) pop (and match) (

) pop (and match)

So long as the stack is empty at the end, all parentheses have been matched. Create the table for the
following expression:

(a + (b - c)

Input Operation Stack (top →)

The error arises because the expression has been processed, but there is still an open parenthesis on the
stack.

Gourd, Kiremire, O'Neal 9 Last modified: 08 Jan 2018

���

Now create the table for the following expression:

(a + b))

Input Operation Stack (top →)

The error arises because there is a close parenthesis left to process, but there is no matching open
parenthesis on the stack (it is empty).

Queues
In America, a waiting line (such as the kind you encounter at a bank or supermarket), is simply referred
to as a line. In England and many other countries, a waiting line is called a queue (pronounced like the
letter Q). The following illustrates a real-world queue that you might encounter at a local movie theater:

Person A is buying a ticket to see the next Star Wars movie. Persons B, C, D, and E are waiting in line
to buy their tickets. The four of them are considered to be waiting in the queue. Since person A is in the
process of buying his ticket, he is not considered to be part of the queue (i.e., he is not waiting). Person
B is at the front, or head, of the queue, and will be the next person to be served. Person E is at the back,
or end, of the queue, and must wait for everyone ahead to be served before being able to buy a ticket.

Queues are known as First-In, First-Out (FIFO) data structures. Assuming that no one breaks or cuts in
line, the first person to enter the queue will be the first person to leave the queue (and thus be the first
person served). Queues are extremely useful, both in the real-world and in computing, because they
enable us to control access to scarce resources (such as Star Wars tickets in the example above).

The queue data structure models the behavior of real-world queues. It supports two primary operations:
enqueue and dequeue. The enqueue operation is used to add a new item to the back of the queue. This
operator is analogous to a person getting in line. The dequeue operation is used to remove an item from
the front of the queue. This operation is analogous to having the person at the head of the line step
forward to be served (and then of course to purchase grossly overpriced and over-buttered popcorn and a

Gourd, Kiremire, O'Neal 10 Last modified: 08 Jan 2018

STAR WARS

A B C D E

���

soda).

More formally, a queue is a list in which all insertions take place at one end, the back of the queue, and
all deletions take place at the opposite end, the front (or head) of the queue. The basic queue data
structure does not allow the insertion or deletion of items from the middle. Thus, it does not support
concepts like people breaking or cutting in line, or giving up and leaving because the line to too long.

Consider the following sequence of operations applied to an initially empty queue, and the resulting
queue configurations. In order to help clearly distinguish between the behavior of stacks verses queues,
the same data presented in the (numeric) stack example above is used (along with the same pattern of
operations applied to the structure). Notice that, even though the order of operations is the same in both
of these examples, the contents of the two structures is quite different:

Trees
Although there are many different types of tree-like data structures, we will focus on the binary tree in
this lesson. First, let's recall the various searching algorithms that were discussed in previous lessons.
One in particular was especially efficient on sorted data: the binary search. The binary search works
well because it effectively halves the search space with each comparison. The strategy is to
continuously pick the middle value in a portion of the list making up half of what is left to search
through. Initially, the middle of the list is picked. If the specified value is not found, then the half of the
list that it cannot be contained within is discarded, and the process repeats with the other half of the list.
This idea of halving the search space with a single comparison is the foundation for the binary tree.

Earlier, you learned that linked lists were made up of nodes that point to other nodes in a linear or
sequential fashion. These other nodes could be considered neighbors. Reaching the nodes in a linked
list is performed by following the link component of each node until the tail of the list is reached. One
could maintain a sorted linked list and implement the binary search, for example. Binary trees are also
made up of nodes; however, instead of a node containing a link to some next neighbor node, each node
in a binary tree contains two link components. These link components are known as the node's children.
This represents a different relationship between nodes.

Gourd, Kiremire, O'Neal 11 Last modified: 08 Jan 2018

empty
queue

1

enQ 1

1 2

enQ 2

1 2 3

enQ 3

2 3

deQ

3

deQ deQ:
empty
queue

���

Perhaps it is best to see what a tree actually looks like for reference:

The top node in the tree is known as the root of the tree. In a binary tree, each node has up to two
children. In the tree above, the root node has two children (one to the left, and one to the right – which
is usually where we place them). In turn, these two children have children of their own. This can
continue many times; however, at some point there will be nodes at the bottom of the tree that do not
have children. These nodes are known as leaf nodes. Collectively, they are referred to as the leaves of
the tree.

Why is this data structure called a binary tree? Well, if we were to turn the image above upside-down, it
would look kind of like a real tree with a root at the bottom that splits into branches. Each branch splits
into more, and so on, until the leaves are reached. It is called a binary tree because each node in the
tree has, at most, two children. As branches are followed down the tree, the tree repeatedly splits into
two halves, much like the process behind the binary search.

Sometimes it is useful to only consider parts of the tree. These parts are known as subtrees:

Gourd, Kiremire, O'Neal 12 Last modified: 08 Jan 2018

root

left
child

leaf leaf leaf

right
child

leaf

leaf leaf

root

left
child

leaf leaf leaf

right
child

leaf

leaf leaf

subtree

subtree

���

Although there is only a single root in a binary tree (always the node at the top of the tree), each subtree
can be said to have a node that serves as its root. For example, the node labeled “left child” in the tree
above can be said to be the root of the shaded subtree on the left.

The nodes in a binary tree are arranged in levels. A level can be said to be a horizontal slice of the
binary tree. In the tree above, for example, the nodes labeled “left child” and “right child” are at the
same level. In fact, they are at level 1. The root is at level 0. For a binary tree that is balanced (i.e.,
one that isn't lopsided with too many extra nodes on any side), the number of levels is a function of the

number of nodes. In a binary tree containing n nodes, there can be, at most, ⌈ log2n ⌉ levels. Intuitively,

this makes sense since each level down the tree splits that part of the tree in half. In the tree above, there

are 12 nodes; thus, there can be at most ⌈ log212⌉=⌈3.58⌉=4 . In fact, there are four levels in the tree!

The most useful binary trees implement an internal ordering of the nodes. Ordered binary trees are
binary trees that abide by the rule that, given any node, the values of all children in the left subtree are
less than the value of the node. Similarly, the values of all children in the right subtree are greater than
(or sometimes greater than or equal to) the value of the node. Here is an example of an ordered binary
tree:

Notice that, for any node in the tree, the values of all children in its left subtree are less than the value of
the node. Similarly, the values of all children in its right subtree are greater than the value of the node.
For example, the values of all nodes to the left of the root are all less than seven, and the values of all
nodes to the right of the root are all greater than 7.

If we were to place all nodes at the same level (i.e., all next to each other) and remove all links to
children, this binary tree would look very much like a sorted array:

Notice that we can easily implement a binary search! An ordered binary tree actually works very much
the same way. To search for a value, we begin at the root and compare its value to the desired value. If
the desired value is less than the value of the root, we follow the link to the left and continue. If the
desired value is greater than the value of the root, we follow the link to the right and continue. This

Gourd, Kiremire, O'Neal 13 Last modified: 08 Jan 2018

7

3

2 5

1 4 6

9

8 11

10 12

732 51 4 6 98 1110 12

���

exactly replicates the behavior of the binary search. If we find a node that is equal to the desired value,
then the search is successful. If we reach a leaf node that is not equal to the desired value, then the
search is unsuccessful.

An interesting aspect of the binary tree is that we can use an array to represent one in memory. The root
of the tree is placed at the first position in the array (i.e., at index 0). The children of any node are easily
found as follows:

• The left child of a node at index i is at index 2i+1 ;

• The right child of a node at index i is at index 2i+2 ; and

• The parent of a node at index i is at index ⌊(i−1)/2⌋ .

Take a look at the previous tree again:

This tree can be represented by an array as follows:

The arrows are there to illustrate a few of the nodes and their children. For example, the root node is at

index 0. Its children are at indexes 2(0)+1=1 and 2(0)+2=2 . This is illustrated by the arrows

pointing from the root node in the array. As another example, the children of the node containing the

value 2 (which is at index 3) are at indexes 2(3)+1=7 and 2(3)+2=8 . Nodes with missing children

are still included in the array (i.e., space is left for the missing children). As a final example, the parent

of the node containing the value 6 (which is at index 10) is at index ⌊(10−1)/2⌋=⌊9/2⌋=⌊4.5 ⌋=4 .

These are all confirmed in the tree above.

Gourd, Kiremire, O'Neal 14 Last modified: 08 Jan 2018

7

3

2 5

1 4 6

9

8 11

10 12

7 3 9 2 5 8 11 1 -- 4 6 -- -- 10 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

���

���

The Science of Computing II Living with Cyber

Raspberry Pi Activity: Room Adventure

In this activity, you will implement a simple text-based game utilizing the object-oriented paradigm.

You will need the following items:

• Raspberry Pi B v3 with power adapter;

• LCD touchscreen; and

• Keyboard and mouse.

If you wish, you can simply bring your laptop with the Python interpreter (and also perhaps IDLE)

installed since you will not be using the GPIO pins on the RPi.

The game

The first step to designing any kind of computer program is to establish the goal or purpose and to

identify all of the necessary details. This is very similar to first understanding a problem before setting

about to solve it. Although we will build a very simple game, it can still have (very simple) goals.

The setting of the game is a small “mansion” consisting of four rooms. Here's the layout:

Gourd 1 Last modified: 01 Dec 2017

���

Each room has various exits that lead to other rooms in the mansion. In addition, each room has items,

some of which can simply be observed, and others that can be picked up and added to the player's

inventory. For this activity, there is no actual goal for the player other than to move about the mansion,

observe various items throughout the rooms in the mansion, and add various items found in the rooms to

inventory. There is an end state that results in death, however! Of course, this doesn't prevent extending

the game with a better story and more variety (some ideas will be discussed later).

The four rooms are laid out in a simple square pattern. Room 1 is at the top-left of the mansion, room 2

is at the top-right, room 3 is at the bottom-left, and room four is at the bottom-right. Each room has

items that can be observed:

• Room 1: A chair and a table;

• Room 2: A rug and a fireplace;

• Room 3: Some bookshelves, a statue, and a desk; and

• Room 4: A brew rig (you know, to brew some delicious libations).

Observable items can provide useful information (once observed) and may reveal new items (some of

which can be placed in the player's inventory). In addition, each room may have some items that can be

grabbed by the player and placed in inventory:

• Room 1: A key;

• Room 3: A book; and

• Room 4: A 6-pack of a recently brewed beverage.

The rooms have various exits that lead to other rooms in the mansion:

• Room 1: An exit to the east that leads to to room 2, and an exit to the south that leads to room 3;

• Room 2: An exit to the south that leads to room 4, and an exit to the west that leads to room 1;

• Room 3: An exit to the north that leads to room 1, and an exit to the east that leads to room 4;

and

• Room 4: An exit to the north that leads to room 2, an exit to the west that leads to room 3, and an

(unlabeled) exit to the south that leads to...death! Think of it as jumping out of a window.

The gameplay

The game is text-based (egads, there are no graphics!). Situational awareness is provided by means of

meaningful text that describes the current situation in the mansion. Information such as which room the

player is located in, what objects are in the current room, and so on, is continually provided throughout

the game. The player is prompted for an action (i.e., what to do) after which the current situation is

updated.

The game supports a simple vocabulary for the player's actions that is composed of a verb followed by a

noun. For example, the action “go south” instructs the player to take the south exit in the current room

(if that is a valid exit). If the specified exit is invalid (or, for example, if the player misspells an action),

an appropriate response is provided, instructing the player of the accepted vocabulary. Supported verbs

are: go, look, and take. Supported nouns depend on the verb; for example, for the verb go, the nouns

north, east, south, and west are supported. This will allow the player to structure the following go

commands:

• go north

• go east

Gourd 2 Last modified: 01 Dec 2017

���

• go south

• go west (young man!)

The verbs look and take support a variety of nouns that depend on the actual items located in the rooms

of the mansion. The player cannot, for example, “look table” in a room that doesn't have a table! Some

examples of look and take actions are:

• look table

• take key

The gameplay depends on the user's input. Rooms change based on valid go actions, meaningful

information is provided based on valid look actions, and inventory is accumulated based on valid take

actions. For this game, gameplay can continue forever or until the player decides to “go south” in room

4 and effectively jump out of the window to his/her death:

At any time, the player may issue the following actions to leave the game:

• quit

• exit

• bye

The design

By now, you may have already noticed that the four rooms are similar. They each have exits, items that

may be observed, and items that may be added to the player's inventory. A good design choice is to

utilize the object-oriented paradigm and implement a class that serves as the blueprint for all of the

rooms in the game. In fact, let's begin there. Launch IDLE or a text editor and edit a new Python

program. Call the document RoomAdventure.py. Let's begin with an informative header and the

beginning of the room class:

##
Name:
Date:
Description:
##

##
the blueprint for a room
class Room(object):

the constructor

Gourd 3 Last modified: 01 Dec 2017

���

def __init__(self, name):
rooms have a name, exits (e.g., south), exit locations
(e.g., to the south is room n), items (e.g., table), item
descriptions (for each item), and grabbables (things that
can be taken into inventory)
self.name = name
self.exits = []
self.exitLocations = []
self.items = []
self.itemDescriptions = []
self.grabbables = []

Note that it is wise to periodically save your program in case something happens. Also, it may be

best to simply read the source code in this activity so that you understand what is going on instead

of actually writing the code as it appears in the document. The entire code will be shown later so

that you can write it in its entirety and see the full context.

So far, we have covered the constructor of the room class. It does what most constructors do: initializes

various instance variables. In this case, a room object must be provided a name in order to be

successfully instantiated (note the name parameter in the constructor). The room's name is assigned,

and lists that contain its exits, observable items, and items that can be placed in inventory are initialized

(all as empty lists). The variables are defined as follows:

• name: contains the room's name;

• exits: contains the room's exits (e.g., north, south);

• exitLocations: contains the rooms found at each exit (e.g., to the south of this room is room 2);

• items: contains the observable items in the room;

• itemDescriptions: contains the descriptions of the observable items in the room; and

• grabbables: contains the items in the room that can be placed in inventory.

Note that the lists exits and exitLocations are known as parallel lists. So are the lists items and

itemDescriptions. Parallel lists are two or more lists that are associated with each other. That is, they

have related data that must be combined to provide meaningful information. The lists are correlated by

position (or index). That is, the items at the first index of exits and exitLocations form a meaningful

pair. If this were the object reference for room 1, for example, the first item in the list exits could be the

string “east”. Consequently, the first item in the list exitLocations would then be the object reference for

room 2, since moving east from room 1 should lead to room 2. Similarly, the first item in the list items

for room 1 could be “table”. Consequently, the first item in the list itemDescriptions would then be “It

is made of oak. A golden key rests on it.” (since this is the description for the table in room 1).

The room class should then provide appropriate getters and setters for each instance variable. Recall

that this is accomplished by providing getter and setter methods that manipulate (either access or

change) instance variables, each of which typically begins with an underscore. For example, the getter

for the list exits would be a function named exits that would return the instance variable (a list) _exits.

Here are the getters and setters for each instance variable. These are located in the room class, beneath

the constructor (make sure to properly indent!):
getters and setters for the instance variables
@property

Gourd 4 Last modified: 01 Dec 2017

���

def name(self):
return self._name

@name.setter
def name(self, value):

self._name = value

@property
def exits(self):

return self._exits

@exits.setter
def exits(self, value):

self._exits = value

@property
def exitLocations(self):

return self._exitLocations

@exitLocations.setter
def exitLocations(self, value):

self._exitLocations = value

@property
def items(self):

return self._items

@items.setter
def items(self, value):

self._items = value

@property
def itemDescriptions(self):

return self._itemDescriptions

@itemDescriptions.setter
def itemDescriptions(self, value):

self._itemDescriptions = value

@property
def grabbables(self):

return self._grabbables

@grabbables.setter
def grabbables(self, value):

self._grabbables = value

Gourd 5 Last modified: 01 Dec 2017

���

The approach in the game design will be to create an instance of the room class for each room in the

mansion. With what has been implemented so far, the room blueprint exists, but there is currently no

way to add exits, items, or grabbables. We must therefore provide methods to enable adding each of

these things to a room. The first obvious addition is to provide support for adding exits (and their

appropriate exit locations). Let's call this method addExit, and have it be provided with an exit and

associated room as parameters:
adds an exit to the room
the exit is a string (e.g., north)
the room is an instance of a room
def addExit(self, exit, room):

append the exit and room to the appropriate lists
self._exits.append(exit)
self._exitLocations.append(room)

The next obvious addition is to provide support for adding observable items and their associated

descriptions. Let's do this similarly to the previous method (i.e., it will be provided with an item and its

description) and call the method addItem:
adds an item to the room
the item is a string (e.g., table)
the desc is a string that describes the item (e.g., it is made
of wood)
def addItem(self, item, desc):

append the item and description to the appropriate lists
self._items.append(item)
self._itemDescriptions.append(desc)

Another obvious addition is to provide support for adding grabbables to the room in a method called

addGrabbable. Since grabbables have no associated information, a single list is maintained. In

addition, the method will be provided the grabbable item's name:
adds a grabbable item to the room
the item is a string (e.g., key)
def addGrabbable(self, item):

append the item to the list
self._grabbables.append(item)

Since a grabbable item can be grabbed and placed in inventory, a method that removes the item from the

room once it has been added to the player's inventory must be implemented. We will call this method

delGrabbable and provided it with the item's name:
removes a grabbable item from the room
the item is a string (e.g., key)
def delGrabbable(self, item):

remove the item from the list
self._grabbables.remove(item)

Lastly, it will be quite useful to provide a meaningful description of the room. This will make it simple

to display all of the relevant information about the current room (e.g., exits, observable items,

grabbables, etc). Recall that classes may specify a __str__() function that returns a string

Gourd 6 Last modified: 01 Dec 2017

���

representation of a class. Statements that print an instance of the class are then directed to this function

for the appropriate string to display. Add the following function to the room class:
returns a string description of the room
def __str__(self):

first, the room name
s = "You are in {}.\n".format(self.name)

next, the items in the room
s += "You see: "
for item in self.items:

s += item + " "
s += "\n"

next, the exits from the room
s += "Exits: "
for exit in self.exits:

s += exit + " "

return s

Note that the escaped character, \n, adds a linefeed to the string (which means to go to the next line).

Strings can span multiple lines! The function builds a string (the variable s in the function above). If the

player is currently in room 1 at the start of the game, for example, the string would be formatted as

follows:
You are in Room 1.
You see: chair table
Exits: east south
You are carrying: []

At this point, we are finished with the room class. For clarity, here it is in its entirety:

##
the blueprint for a room
class Room(object):

the constructor
def __init__(self, name):

rooms have a name, exits (e.g., south), exit locations
(e.g., to the south is room n), items (e.g., table), item
descriptions (for each item), and grabbables (things that
can be taken into inventory)
self.name = name
self.exits = []
self.exitLocations = []
self.items = []
self.itemDescriptions = []
self.grabbables = []

Gourd 7 Last modified: 01 Dec 2017

���

getters and setters for the instance variables
@property
def name(self):

return self._name

@name.setter
def name(self, value):

self._name = value

@property
def exits(self):

return self._exits

@exits.setter
def exits(self, value):

self._exits = value

@property
def exitLocations(self):

return self._exitLocations

@exitLocations.setter
def exitLocations(self, value):

self._exitLocations = value

@property
def items(self):

return self._items

@items.setter
def items(self, value):

self._items = value

@property
def itemDescriptions(self):

return self._itemDescriptions

@itemDescriptions.setter
def itemDescriptions(self, value):

self._itemDescriptions = value

@property
def grabbables(self):

return self._grabbables

@grabbables.setter
def grabbables(self, value):

self._grabbables = value

Gourd 8 Last modified: 01 Dec 2017

���

adds an exit to the room
the exit is a string (e.g., north)
the room is an instance of a room
def addExit(self, exit, room):

append the exit and room to the appropriate lists
self._exits.append(exit)
self._exitLocations.append(room)

adds an item to the room
the item is a string (e.g., table)
the desc is a string that describes the item (e.g., it is made
of wood)
def addItem(self, item, desc):

append the item and exit to the appropriate lists
self._items.append(item)
self._itemDescriptions.append(desc)

adds a grabbable item to the room
the item is a string (e.g., key)
def addGrabbable(self, item):

append the item to the list
self._grabbables.append(item)

removes a grabbable item from the room
the item is a string (e.g., key)
def delGrabbable(self, item):

remove the item from the list
self._grabbables.remove(item)

returns a string description of the room
def __str__(self):

first, the room name
s = "You are in {}.\n".format(self.name)

next, the items in the room
s += "You see: "
for item in self.items:

s += item + " "
s += "\n"

next, the exits from the room
s += "Exits: "
for exit in self.exits:

s += exit + " "

return s

Gourd 9 Last modified: 01 Dec 2017

���

For clarity, here's a layout of the Room class:

The main part of the game

It is now time to implement the main part of the game. Note that the room class discussed above only

specifies what rooms are (i.e., their state and behavior). No rooms have been created thus far, no user

input capability has been implemented, no decision-making based on user input has been implemented,

and so on. This is our next task.

Let's begin by initializing an empty inventory list and creating the rooms of the mansion. The source

code that follows belongs beneath the room class:

##
START THE GAME!!!
inventory = [] # nothing in inventory...yet
createRooms() # create the rooms

Note the call to the function createRooms(). We often implement the main part of a program as a

driver, in that it drives actions to be taken. Often, the actions are encapsulated in functions. Therefore,

the main part of a program may call many functions. Overall, this helps to improve the readability of

our programs and helps to simplify maintaining and updating them as well. The createRooms()

function creates each instance of the four rooms. It sets their name, exits (and exit locations), observable

items (and descriptions), and grabbable items. Lastly, it sets the player's current room at the beginning

of the game (room 1). Let's work on the createRooms() function:

##
creates the rooms
def createRooms():

Gourd 10 Last modified: 01 Dec 2017

constructor

accessors and
mutators

addExit function

addItem function

addGrabbable
function

delGrabbable
function

__str__ function

���

r1 through r4 are the four rooms in the mansion
currentRoom is the room the player is currently in (which can
be one of r1 through r4)
since it needs to be changed in the main part of the program,
it must be global
global currentRoom

create the rooms and give them meaningful names
r1 = Room("Room 1")
r2 = Room("Room 2")
r3 = Room("Room 3")
r4 = Room("Room 4")

add exits to room 1
r1.addExit("east", r2) # -> to the east of room 1 is room 2
r1.addExit("south", r3)
add grabbables to room 1
r1.addGrabbable("key")
add items to room 1
r1.addItem("chair", "It is made of wicker and no one is sitting

on it.")
r1.addItem("table", "It is made of oak. A golden key rests on

it.")

add exits to room 2
r2.addExit("west", r1)
r2.addExit("south", r4)
add items to room 2
r2.addItem("rug", "It is nice and Indian. It also needs to be

vacuumed.")
r2.addItem("fireplace", "It is full of ashes.")

add exits to room 3
r3.addExit("north", r1)
r3.addExit("east", r4)
add grabbables to room 3
r3.addGrabbable("book")
add items to room 3
r3.addItem("bookshelves", "They are empty. Go figure.")
r3.addItem("statue", "There is nothing special about it.")
r3.addItem("desk", "The statue is resting on it. So is a book.")

add exits to room 4
r4.addExit("north", r2)
r4.addExit("west", r3)
r4.addExit("south", None) # DEATH!
add grabbables to room 4
r4.addGrabbable("6-pack")

Gourd 11 Last modified: 01 Dec 2017

���

add items to room 4
r4.addItem("brew_rig", "Gourd is brewing some sort of oatmeal

stout on the brew rig. A 6-pack is resting beside it.")

set room 1 as the current room at the beginning of the game
currentRoom = r1

Note the exit to the south of room 4: None. This is the “window” referred to earlier. If the player exits

south in room 4, the game will be over. This will be easy to check since the current room will be None

(and not some actual instance of the class room). Recall that the reserved word None in Python refers to

nothing or the absence of a value.

When the program is first run, the player's inventory list is initially empty. Subsequently, the call to the

createRooms() function creates the rooms and stores them in memory. In addition, the global

variable currentRoom is set to the local variable r1 (room 1). Even though r1 is local to the function

createRooms(), it will still be in memory for the duration of the game.

At this point, all that's left to do is to display the information associated with the current room, to prompt

the player for an input action, and to act based on the player's input action. This will be done beneath

the call to the function createRooms(). First, let's provide situational awareness and also deal with

the possibility that the player has jumped out the window (in which case the game should end). These

tasks will occur until either the player dies or asks to leave the game. Therefore, the remainder of the

program will be contained within a repetition construct (we'll use a while loop). Exiting the while loop

will be possible by use of the break instruction:

play forever (well, at least until the player dies or asks to quit)
while (True):

set the status so the player has situational awareness
the status has room and inventory information
status = "{}\nYou are carrying: {}\n".format(currentRoom,

inventory)

if the current room is None, then the player is dead
this only happens if the player goes south when in room 4
exit the game
if (currentRoom == None):

death()
break

display the status
print "==="
print status

Initially, a default status is set that provides the information associated with the current room and the

player's inventory. This is then displayed. However, if the current room is None (i.e., the player exited

south in room 4), then the player is dead and the game is ended (via the break statement that will exit the

while loop). Note the call to the function death(). For now, you can comment this one out. It simply

Gourd 12 Last modified: 01 Dec 2017

���

displays an appropriate “message” when the player dies. It will be provided later in the full code listing

for the main part of the game.

The next task is to add support for user input:
prompt for player input
the game supports a simple language of <verb> <noun>
valid verbs are go, look, and take
valid nouns depend on the verb
we use raw_input here to treat the input as a string instead of
an expression
action = raw_input("What to do? ")

set the user's input to lowercase to make it easier to compare
the verb and noun to known values
action = action.lower()

exit the game if the player wants to leave (supports quit,
exit, and bye)
if (action == "quit" or action == "exit" or action == "bye"):

break

The raw_input function is used instead of the familiar input function since it interprets the user's

input as a string by default (unlike the input function). The strategy is to prompt the player for input

and convert it to lowercase to make comparison to the supported vocabulary easier. We also handle

exiting the game. The next task is to parse the player's action; that is, to determine the input and try to

apply it to the supported vocabulary of a verb followed by a noun:
set a default response
response = "I don't understand. Try verb noun. Valid verbs are

go, look, and take"
split the user input into words (words are separated by spaces)
and store the words in a list
words = action.split()

the game only understands two word inputs
if (len(words) == 2):

isolate the verb and noun
verb = words[0]
noun = words[1]

At this point, the user's input is parsed into a verb and a noun. The next step is to check the verb to see

if it matches one that is supported (i.e., go, look, take):
the verb is: go
if (verb == "go"):

set a default response
response = "Invalid exit."

check for valid exits in the current room

Gourd 13 Last modified: 01 Dec 2017

���

for i in range(len(currentRoom.exits)):
a valid exit is found
if (noun == currentRoom.exits[i]):

change the current room to the one that is
associated with the specified exit
currentRoom = currentRoom.exitLocations[i]

set the response (success)
response = "Room changed."

no need to check any more exits
break

If the verb is go, we then check the noun for a valid exit in the current room. Recall that the exits have

an associated exit location (via the parallel lists declared in the room class). The strategy is to identify

the specified exit in the list of exits in the current room, and then identify the matching exit location (i.e.,

the room that the exit leads to). Subsequently, we change the current room to this adjacent room. We

then break out of the for loop which will display the response (shown later) and cycle back to the

beginning of the while loop.

Support for the verb look is similar:
the verb is: look
elif (verb == "look"):

set a default response
response = "I don't see that item."

check for valid items in the current room
for i in range(len(currentRoom.items)):

a valid item is found
if (noun == currentRoom.items[i]):

set the response to the item's description
response = currentRoom.itemDescriptions[i]

no need to check any more items
break

Support for the verb take is only slightly different:
the verb is: take
elif (verb == "take"):

set a default response
response = "I don't see that item."

check for valid grabbable items in the current room
for grabbable in currentRoom.grabbables:

a valid grabbable item is found
if (noun == grabbable):

add the grabbable item to the player's
inventory

Gourd 14 Last modified: 01 Dec 2017

���

inventory.append(grabbable)

remove the grabbable item from the room
currentRoom.delGrabbable(grabbable)

set the response (success)
response = "Item grabbed."

no need to check any more grabbable items
break

In this case, if the specified grabbable item is found in the room, it is added to the player's inventory.

Subsequently, it is removed from the current room's list of grabbables (after all, we don't want to grab it

again!). An appropriate response is set, and the for loop is exited.

The last thing to do is to display the response and cycle back to the beginning of the while loop so that

the description of the current room and the player's inventory can be displayed, and input can be

solicited from the player once again:
display the response
print "\n{}".format(response)

Yes, this is a lot of code split up into many parts across this document. This is why it was suggested that

you not actually write any segmented code as you read this document and process through the activity.

And now, here is the entire source code for the main part of the program. Note that the

createRooms() function is not included below; however, it should be placed above the main part of

the program (but outside of the Room class):

##
START THE GAME!!!
inventory = [] # nothing in inventory...yet
createRooms() # add the rooms to the game

play forever (well, at least until the player dies or asks to quit)
while (True):

set the status so the player has situational awareness
the status has room and inventory information
status = "{}\nYou are carrying: {}\n".format(currentRoom,

inventory)

if the current room is None, then the player is dead
this only happens if the player goes south when in room 4
if (currentRoom == None):

status = "You are dead."

display the status
print "==="
print status

Gourd 15 Last modified: 01 Dec 2017

���

if the current room is None (and the player is dead), exit the
game
if (currentRoom == None):

death()
break

prompt for player input
the game supports a simple language of <verb> <noun>
valid verbs are go, look, and take
valid nouns depend on the verb
we use raw_input here to treat the input as a string instead of
a numeric value
action = raw_input("What to do? ")

set the user's input to lowercase to make it easier to compare
the verb and noun to known values
action = action.lower()

exit the game if the player wants to leave (supports quit,
exit, and bye)
if (action == "quit" or action == "exit" or action == "bye"):

break

set a default response
response = "I don't understand. Try verb noun. Valid verbs are

go, look, and take"
split the user input into words (words are separated by spaces)
words = action.split()

the game only understands two word inputs
if (len(words) == 2):

isolate the verb and noun
verb = words[0]
noun = words[1]

the verb is: go
if (verb == "go"):

set a default response
response = "Invalid exit."

check for valid exits in the current room
for i in range(len(currentRoom.exits)):

a valid exit is found
if (noun == currentRoom.exits[i]):

change the current room to the one that is
associated with the specified exit
currentRoom = currentRoom.exitLocations[i]

Gourd 16 Last modified: 01 Dec 2017

���

set the response (success)
response = "Room changed."

no need to check any more exits
break

the verb is: look
elif (verb == "look"):

set a default response
response = "I don't see that item."

check for valid items in the current room
for i in range(len(currentRoom.items)):

a valid item is found
if (noun == currentRoom.items[i]):

set the response to the item's description
response = currentRoom.itemDescriptions[i]

no need to check any more items
break

the verb is: take
elif (verb == "take"):

set a default response
response = "I don't see that item."

check for valid grabbable items in the current room
for grabbable in currentRoom.grabbables:

a valid grabbable item is found
if (noun == grabbable):

add the grabbable item to the player's
inventory
inventory.append(grabbable)

remove the grabbable item from the room
currentRoom.delGrabbable(grabbable)

set the response (success)
response = "Item grabbed."

no need to check any more grabbable items
break

display the response
print "\n{}".format(response)

Source code template?

You may be asking yourself if there is source code in the form of a template for this activity. No, there

isn't. Although it will be tedious and a bit time-consuming, typing the code by hand will help you to

Gourd 17 Last modified: 01 Dec 2017

���

understand the code, to learn how to properly format Python code, and perhaps result in better retention

of Python syntax and good program style and structure. Please refrain from simply copy-and-pasting the

source code from the PDF version of this document into a Python source code file. It is to your

advantage to take time now to learn this so that it becomes easier in the future. After all, aren't you in

this curriculum because you are interested in learning this stuff and because you chose to be here? In

fact, the prof should code the game with you in real time during this activity, typing each statement, one

at a time!

The flow of the source code is as follows:

• The room class;

• The createRooms() function;

• The (optional) death() function; and

• The main part of the program.

Gourd 18 Last modified: 01 Dec 2017

Room class

createRooms
function

death function

main program

���

The optional death() function

Earlier, you were asked to comment out the call to the function death() in the main part of the

program. In case you wish to implement it, here it is (yes, it is intentionally obfuscated). It must be

defined above the main part of the program. Since it is obfuscated, you may copy-and-paste this

function into your source code (pay attention to the end of the lines and indentation!):

displays an appropriate "message" when the player dies
yes, this is intentionally obfuscated!
def death():

print " " * 17 + "u" * 7
print " " * 13 + "u" * 2 + "$" * 11 + "u" * 2
print " " * 10 + "u" * 2 + "$" * 17 + "u" * 2
print " " * 9 + "u" + "$" * 21 + "u"
print " " * 8 + "u" + "$" * 23 + "u"
print " " * 7 + "u" + "$" * 25 + "u"
print " " * 7 + "u" + "$" * 25 + "u"
print " " * 7 + "u" + "$" * 6 + "\"" + " " * 3 + "\"" + "$" * 3 +

"\"" + " " * 3 + "\"" + "$" * 6 + "u"
print " " * 7 + "\"" + "$" * 4 + "\"" + " " * 6 + "u$u" + " " * 7

+ "$" * 4 + "\""
print " " * 8 + "$" * 3 + "u" + " " * 7 + "u$u" + " " * 7 + "u" +

"$" * 3
print " " * 8 + "$" * 3 + "u" + " " * 6 + "u" + "$" * 3 + "u" + "

" * 6 + "u" + "$" * 3
print " " * 9 + "\"" + "$" * 4 + "u" * 2 + "$" * 3 + " " * 3 +

"$" * 3 + "u" * 2 + "$" * 4 + "\""
print " " * 10 + "\"" + "$" * 7 + "\"" + " " * 3 + "\"" + "$" * 7

+ "\""
print " " * 12 + "u" + "$" * 7 + "u" + "$" * 7 + "u"
print " " * 13 + "u$\"$\"$\"$\"$\"$\"$u"
print " " * 2 + "u" * 3 + " " * 8 + "$" * 2 + "u$ $ $ $ $u" + "$"

* 2 + " " * 7 + "u" * 3
print " u" + "$" * 4 + " " * 8 + "$" * 5 + "uuu" + "$" * 3 + "

" * 7 + "u" + "$" * 4
print " " * 2 + "$" * 5 + "u" * 2 + " " * 6 + "\"" + "$" * 9 +

"\"" + " " * 5 + "u" * 2 + "$" * 6
print "u" + "$" * 11 + "u" * 2 + " " * 4 + "\"" * 5 + " " * 4 +

"u" * 4 + "$" * 10
print "$" * 4 + "\"" * 3 + "$" * 10 + "u" * 3 + " " * 3 + "u" * 2

+ "$" * 9 + "\"" * 3 + "$" * 3 + "\""
print " " + "\"" * 3 + " " * 6 + "\"" * 2 + "$" * 11 + "u" * 2 +

" " + "\"" * 2 + "$" + "\"" * 3
print " " * 11 + "u" * 4 + " \"\"" + "$" * 10 + "u" * 3
print " " * 2 + "u" + "$" * 3 + "u" * 3 + "$" * 9 + "u" * 2 +

" \"\"" + "$" * 11 + "u" * 3 + "$" * 3
print " " * 2 + "$" * 10 + "\"" * 4 + " " * 11 + "\"\"" + "$" *

11 + "\""

Gourd 19 Last modified: 01 Dec 2017

���

print " " * 3 + "\"" + "$" * 5 + "\"" + " " * 22 + "\"\"" + "$" *
4 + "\"\""

print " " * 5 + "$" * 3 + "\"" + " " * 25 + "$" * 4 + "\""

Suggested improvements

Although this is a simple game in terms of gameplay, it can quickly become quite complicated to design

and implement. It can also become more involved and, dare I say it, even more fun than it already is by

making just a few fairly minor improvements:

• Some items that can be placed in the player's inventory are identified in the description of items

(e.g., the key on the table in room 1). When placed in inventory, the item's description should be

appropriately modified (e.g., the key is no longer on the table).

• Adding more observable items and items that can be added to inventory in each room.

• Adding more rooms (e.g., making some sort of maze).

• Making the mansion three-dimensional (i.e., adding exits above and below to new rooms).

• Adding a goal that requires solving a puzzle. For example, using a key in inventory that was

taken from a room to unlock a box that is located in another room. Unlocking the box may

reveal new items. This would require adding to the vocabulary (e.g., a new verb use). If the

player is in the correct room and has the correct item in inventory, issuing the proper action (e.g.,

“use key”) would solve a puzzle and/or reveal new items that can be observed or taken into

inventory.

• Adding the ability to look at individual inventory items (i.e., inventory items can have

descriptions as well).

• Adding points that the player can accumulate by adding items to inventory or by solving puzzles.

• ...there are more...

Homework: Room Adventure

For the homework portion of this activity, you may have the option to work in groups (pending prof

approval). It is suggested that groups contain at least one confident Python coder.

Your task is to implement at least one of the suggested improvements. Clearly comment your

changes and additions to the source code! If you wish to implement an improvement that is not listed

above, please get with the prof first for approval. Note that this component is worth over one-third of

your grade for this assignment! So be creative and precise. You will definitely want to implement

significant improvements, since your grade for this portion will be comparatively assigned (i.e., the best

improvements to the game earn the best grade for this portion of the assignment).

You are to submit your Python source code only (as a .py file) through the upload facility on the

web site.

Gourd 20 Last modified: 01 Dec 2017

���

The Science of Computing II Living with Cyber

Raspberry Pi Activity: My Binary Addiction

In this activity, you will implement a one-bit binary adder using LEDs, resistors, and push-button

switches. You will need the following items:

• Raspberry Pi B v3 with power adapter;

• LCD touchscreen;

• Keyboard and mouse;

• Breadboard;

• GPIO interface board with ribbon cable; and

• LEDs, resistors, switches, and jumper wires provided in your kit.

Regarding the electronic components, you will need the following:

• 2x red LEDs;

• 4x green LEDs;

• 4x blue LEDs;

• 2x push-button switches;

• 9x 220Ω resistors; and

• 9x jumper wires.

The adder

Recall the single-bit half adder shown in a previous lesson:

It takes two single-bit inputs, A and B, and produces two outputs, S (the sum bit) and C (the carry bit).

The half adder has the following truth table:

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

The question is, how do we implement these logic gates in a programming language? We have seen that

if-statements are related to logic gates. For example, we can evaluate if one condition and another are

true. If and only if both are true will the entire condition be true (and the statements in the true part of

the if-statement will be executed). Therefore, one way to implement the truth table for a half adder is as

follows:

Gourd, Irteza 1 Last modified: 29 Jan 2018

Half Adder

A

B

S

C

���

 1: if A is 0 and B is 0
 2: then
 3: S ← 0
 4: C ← 0
 5: else
 6: if A is 1 and B is 1
 7: then
 8: S ← 0
 9: C ← 1
10: else
11: S ← 1
12: C ← 0
13: end
14: end

Notice that this basically handles each row of the truth table above. The first if-statement handles the

first row of the truth table (when A and B are both 0), and sets S and C to 0. The second if-statement

handles the last row of the truth table (when A and B are both 1), and sets S to 0 and C to 1. The last

case (the else part of the second if-statement) handles the two middle rows of the truth table, where

either A or B is 1 (but not both), and sets S to 1 and C to 0.

This is how we would implement a half adder in Scratch, for example. Most general purpose

programming languages (like Python), however, allow bitwise operations. That is, they can take

Boolean inputs (like A and B) and implement the logic of primitive gates (e.g., and and or). This is a

much simpler way to implement the logic! Plus, it allows us to significantly reduce the amount of code

required to implement the half adder. Recall that S is the output of A xor B, and C is the output of A and

B:
S = (~A & B) | (A & ~B)
C = A & B

That's it! Just two statements. Recall that Python support several bitwise operators, including and (&),

or (|), and not (~). Also, the xor operation is performed as shown in an earlier lesson: not A and B or A

and not B. Therefore, S is ultimately assigned the result of A xor B, and C is assigned the result of A

and B. Although we structured our half adder such that the xor functionality was built using the three

primitive gates (and, or, and not), Python has the xor bitwise operator (^) that we can use directly! This

is quite useful:
S = A ^ B
C = A & B

GPIO in Python

Before we continue, let's review how Python handles GPIO on the RPi. Implement the following single

switch, single LED circuit:

Gourd, Irteza 2 Last modified: 29 Jan 2018

���

Here's one way to layout this circuit:

If you have the black GPIO interface board, layout the circuit as follows instead:

Gourd, Irteza 3 Last modified: 29 Jan 2018

���

Recall that there are actually three different pin numbering schemes in use with GPIO pins on the RPi:

(1) the physical pin order on the RPi; (2) the numbering assigned by the manufacturer of the Broadcom

chip on the RPi; and (3) an older numbering assigned by an early RPi user who developed a library

called wiringPi. Here's the cross-reference table shown in an earlier activity:

If you have the green GPIO interface, you won't have to refer to the table since the RPi uses the BCM

pin numbering scheme (which the green GPIO interface also uses). If you have the black GPIO

interface, the following comparison of the GPIO interface boards labeled with both pin numbering

schemes (shown in an earlier activity) will help:

In the layout diagram above, the LED is connected to GP17 (which refers to BCM pin 17 on the RPi

and P0 on the black GPIO interface), and the switch is connected to GP25 (which refers to BCM pin 25

on the RPi and P6 on the black GPIO interface).

The goal is to detect a switch press by ensuring that the input pin to which it is connected is initially

pulled down. When the switch is pressed, current flows from +3.3V to the input pin, which can be

detected. The LED is then driven high. Here's a Python program that implements this:
import RPi.GPIO as GPIO
from time import sleep

set the LED and switch pin numbers
led = 17

Gourd, Irteza 4 Last modified: 29 Jan 2018

BCM wPi Name Physical Name wPi BCM

3V3 1 2 5V

2 8 SDA.1 3 4 5V

3 9 SCL.1 5 6 GND

4 7 GPIO.7 7 8 TXD 15 14

GND 9 10 RXD 16 15

17 0 GPIO.0 11 12 GPIO.1 1 18

27 2 GPIO.2 13 14 GND

22 3 GPIO.3 15 16 GPIO.4 4 23

3V3 17 18 GPIO.5 5 24

10 12 MOSI 19 20 GND

9 13 MISO 21 22 GPIO.6 6 25

11 14 SCLK 23 24 CE0 10 8

GND 25 26 CE1 11 7

0 30 SDA.0 27 28 SCL.0 31 1

5 21 GPIO.21 29 30 GND

6 22 GPIO.22 31 32 GPIO.26 26 12

13 23 GPIO.23 33 34 GND

19 24 GPIO.24 35 36 GPIO.27 27 16

26 25 GPIO.25 37 38 GPIO.28 28 20

GND 39 40 GPIO.29 29 21

���

button = 25

use the Broadcom pin mode
GPIO.setmode(GPIO.BCM)

setup the LED and switch pins
GPIO.setup(led, GPIO.OUT)
GPIO.setup(button, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

do this forever
while (True):

light the LED when the switch is pressed...
...turn it off otherwise
if (GPIO.input(button) == GPIO.HIGH):

GPIO.output(led, GPIO.HIGH)
else:

GPIO.output(led, GPIO.LOW)
sleep(0.1)

To make things more interesting, let's blink an LED once every second (i.e., on for 0.5 second, off for

0.5 second) by default. If the switch is pressed, let's blink the LED faster, once every 0.5 second (i.e., on

for 0.25 second, off for 0.25 second):
import RPi.GPIO as GPIO
from time import sleep

set the LED and switch pin numbers
led = 17
button = 25

use the Broadcom pin mode
GPIO.setmode(GPIO.BCM)

setup the LED and switch pins
GPIO.setup(led, GPIO.OUT)
GPIO.setup(button, GPIO.IN, pull_up_down=GPIO.PUD_UP)

we'll discuss this later, but the try-except construct allows
us to detect when Ctrl+C is pressed so that we can reset the
GPIO pins
try:

blink the LED forever
while (True):

the delay is 0.5s if the switch is not pressed
if (GPIO.input(button) == GPIO.HIGH):

delay = 0.5
otherwise, it's 0.25s
else:

delay = 0.25

Gourd, Irteza 5 Last modified: 29 Jan 2018

���

blink the LED
GPIO.output(led, GPIO.HIGH)
sleep(delay)
GPIO.output(led, GPIO.LOW)
sleep(delay)

detect Ctrl+C
except KeyboardInterrupt:

reset the GPIO pins
GPIO.cleanup()

You probably noticed the try-except construct. A comment notes that it will be discussed later (and it

will!). For now, it's enough to know that such a construct is used to group statements that may cause an

exception (i.e., some sort of abnormal event during runtime). In the case of the program above, the

abnormal event is the user pressing Ctrl+C (which breaks out of the program). We can detect this and

execute statements subsequently to do things like cleaning up and/or resetting the GPIO pins.

Now that GPIO on the RPi in Python has been reviewed, let's get to work on the circuit for this activity.

The circuit

Implement the following half adder circuit. For this part of the activity, you will need two switches, four

LEDs, four resistors, and some jumper wires:

Here's one way to layout this circuit:

Gourd, Irteza 6 Last modified: 29 Jan 2018

���

If you have the black GPIO interface, layout the circuit as follows instead:

Note that the LEDs labeled S and C (the outputs) are green LEDs, and the LEDs labeled A and B (the

inputs) are red LEDs. The input LEDs are also connected to the push-button switches. Since the

switches are connected to +3.3V (i.e., they complete the circuit both to the input pins, GP25 (P6) and

GP5 (P21), and to the red LEDs when closed), then the LEDs must be connected such that the anode

(the longer positive side) is matched with the switch (i.e., the shorter negative side is connected to

GND). This is illustrated in the circuit above. Pay close attention to polarity (i.e., where the negative

and positive terminals of electronic components are) and wiring. Recall that the position of the resistor

(either on the negative or positive side of the LED) doesn't matter. In the circuit above, the resistors are

placed on the negative side of the LEDs.

Note that S (the green LED on the left) is connected to GP17 (P0), and C (the green LED on the right) is

connected to GP22 (P3).

Gourd, Irteza 7 Last modified: 29 Jan 2018

���

Note that the labels (A, B, S, and C) are strictly informative (i.e., they serve no function other than to

provide situational awareness). It should be clear that the left push-button switch represents the bit input

A, the right push-button switch represents the bit input B, the green LED on the left represents the bit

output S, and the green LED on the right represents the bit output C. The red LEDs are wired to the

push-button switches and provide feedback of the state of A and B (i.e., the left LED corresponds to the

left push-button switch, and vice versa).

The code

Here's the entire program for the half adder in Python:
import RPi.GPIO as GPIO
from time import sleep

set the GPIO pin numbers
inA = 25
inB = 5
outS = 17
outC = 22

use the Broadcom pin mode
GPIO.setmode(GPIO.BCM)

setup the input and output pins
GPIO.setup(inA, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
GPIO.setup(inB, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
GPIO.setup(outS, GPIO.OUT)
GPIO.setup(outC, GPIO.OUT)

we'll discuss this later, but the try-except construct allows
us to detect when Ctrl+C is pressed so that we can reset the
GPIO pins
try:

keep going until the user presses Ctrl+C
while (True):

initialize A, B, S, and C
A = 0
B = 0
S = 0
C = 0

set A and B depending on the switches
if (GPIO.input(inA) == GPIO.HIGH):

A = 1
if (GPIO.input(inB) == GPIO.HIGH):

B = 1

calculate S and C using A and B
S = A ^ B # A xor B

Gourd, Irteza 8 Last modified: 29 Jan 2018

���

C = A & B # A and B

set the output pins appropriately
(to light the LEDs as appropriate)
GPIO.output(outS, S)
GPIO.output(outC, C)

detect Ctrl+C
except KeyboardInterrupt:

reset the GPIO pins
GPIO.cleanup()

After importing the required libraries, variables that map to GPIO pins are declared (inA representing the

pin connected to switch A, inB representing the pin connected to switch B, outS representing the pin

connected to LED S, and outC representing the pin connected to LED C). Next, the pins are setup (as

either input or output pins). Since the switches are wired to +3.3V, the input pins are setup with a pull-

down resistor. That is, their default value will be low at 0V. When a switch is pressed, this will bring up

the input pin to 3.3V. Since the LEDs representing the inputs are also wired with the switches, they will

light when the switches are pressed.

Next, the program detects the switch states and turns on the LEDs as appropriate. A and B are initialized

to 0. If a switch is pressed, its corresponding input (A or B) is changed to 1. The values of S and C are

then calculated (as A xor B for S, and A and B for C). Finally, the LEDs are triggered appropriately

depending on the values of S and C.

Perhaps a more efficient way to assign values for A and B is simply to modify the while loop as follows:
while (True):

set A and B depending on the switches
A = GPIO.input(inA)
B = GPIO.input(inB)

calculate S and C depending on A and B
S = A ^ B # A xor B
C = A & B # A and B

set the output pins appropriately (to light the LEDs as
appropriate)
GPIO.output(outS, S)
GPIO.output(outC, C)

The end result is the same!

)���nding this a bit

Take a look at the following circuit diagram. This time, there are nine LEDs, all connected to GPIO pins

(GP17=P0, GP18=P1, GP27=P2, GP22=P3, GP26=P25, GP12=P26, GP16=P27, GP20=P28,

GP21=P29) to a resistor that is connected to ground.

Gourd, Irteza 9 Last modified: 29 Jan 2018

���

Here is one way to layout this circuit:

For the black GPIO interface, the layout diagram could look like this:

Gourd, Irteza 10 Last modified: 29 Jan 2018

���

The LEDs represent the sum of two 8-bit numbers, with the least significant bit represented by the LED

all the way to the right. For example, if the LEDs were to represent the sum of 94 + 113 = 207 (see the

table below), then the state of the LEDs would be: off, on, on, off, off, on, on, on, on. The overflow bit

(on the left) would be 0 (off).

Binary Decimal

29 28 27 26 25 24 23 22 21 20

Carry 0 1 1 1 0 0 0 0 1

1st number 0 1 0 1 1 1 1 0 94

2nd number 0 1 1 1 0 0 0 1 113

Sum 0 1 1 0 0 1 1 1 1 207

If the LEDs were to represent the sum of 150 + 150 = 300 (see the table below), then the state of the

LEDs would be: on, off, off, on, off, on, on, off, off. In this case, the overflow bit would be 1 (on).

Binary Decimal

29 28 27 26 25 24 23 22 21 20

Carry 1 0 0 1 0 1 1 0 1

1st number 1 0 0 1 0 1 1 0 150

2nd number 1 0 0 1 0 1 1 0 150

Sum 1 0 0 1 0 1 1 0 0 300

To make this work, you will need to implement a full adder as described in a previous lesson:

Gourd, Irteza 11 Last modified: 29 Jan 2018

���

Recall that a full adder is made up of two half adders. One half adder computes the sum and carry of A

and B. The sum is then brought into another half adder and added along with the carry in. The sum of

this second half adder produces the actual sum of A and B plus the carry in. The carry out of this half

adder is combined with the carry out of the first half adder through an or gate. The output is the carry

out. You can take the script that implements the half adder (created in the first part of this activity) and

extend it to a full adder.

Since each number is represented as a list, we will iterate through each, one bit at a time, and implement

the full adder to produce a sum and carry out for each bit. Recall that the carry out is fed into the carry

in for the next bit (to the left). We saw this when chaining full adders together to add two 4-bit numbers

together:

In this activity, we are extending this to add two 8-bit numbers. The idea is the same.

Let's take a look at the beginning of the source code for this program. First, the header:
###
Name:
Date:
Description:
###
import RPi.GPIO as GPIO # bring in GPIO functionality
from random import randint # to generate random integers

We'll make use of the randint function from the random library to generate the two random numbers.

Since there are many outputs, one for each LED, why don't we specify them all in a list. the following

function sets up the GPIO pins for this program:
function that defines the GPIO pins for the nine output LEDs
def setGPIO():

define the pins (change these if they are different)
gpio = [17, 18, 27, 22, 26, 12, 16, 20, 21]
set them up as output pins
GPIO.setup(gpio, GPIO.OUT)

return gpio

Gourd, Irteza 12 Last modified: 29 Jan 2018

���

Note how the pins are defined in a list called gpio. We then set each pin in the list to be an output pin.

The following snippet of code defines a function that generate a random 8-bit binary number:
function that randomly generates an 8-bit binary number
def setNum():

create an empty list to represent the bits
num = []
generate eight random bits
for i in range(0, 8):

append a random bit (0 or 1) to the end of the list
num.append(randint(0, 1))

return num

This function first creates an empty list, called num. It then appends a random integer from 0 to 1, 8

times. The final number is then returned.

The following function handles turning on the appropriate LEDs representing the sum of the two 8-bit

binary numbers:
displays the sum (by turning on the appropriate LEDs)
def display():

for i in range(len(sum)):
if the i-th bit is 1, then turn the i-th LED on
if (sum[i] == 1):

GPIO.output(gpio[i], GPIO.HIGH)
otherwise, turn it off
else:

GPIO.output(gpio[i], GPIO.LOW)

The function first iterates through the bits in the final sum. For each bit that is on (1), the matching

GPIO pin is set high. For each bit that is off (0), the matching GPIO pin is set low.

And now we have reached the function that you are to implement in this activity – the full adder:
function that implements a full adder using two half adders
inputs are Cin, A, and B; outputs are S and Cout
this is the function that you need to implement
def fullAdder(Cin, A, B):

###########################
write your code here!!!!!
###########################

return S, Cout # we can return more than one value!

Of course, you will need to implement this on your own! At then end of the function, two values are

returned: S and Cout. This makes perfect sense, since that's the expected output of a full adder.

Gourd, Irteza 13 Last modified: 29 Jan 2018

���

The following function controls the addition of each bit in the two 8-bit binary numbers. It effectively

serves as the chain that connects the full adders (that you will implement in the function above):
controls the addition of each 8-bit number to produce a sum
def calculate(num1, num2):

Cout = 0 # the initial Cout is 0
sum = [] # initialize the sum
n = len(num1) - 1 # position of the right-most bit of num1

step through each bit, from right-to-left
while (n >= 0):

isolate A and B (the current bits of num1 and num2)
A = num1[n]
B = num2[n]
set the Cin (as the previous half adder's Cout)
Cin = Cout

call the fullAdder function that takes Cin, A, and...
...B, and returns S and Cout
S, Cout = fullAdder(Cin, A, B)

insert sum bit, S, at the beginning (index 0) of sum
sum.insert(0, S)

go to the next bit position (to the left)
n -= 1

insert the final carry out at the beginning of the sum
sum.insert(0, Cout)

return sum

Once all of the bits have been run through the full adder (and the sum has been completely calculated),

the overflow bit of the sum (i.e., the left-most bit at the first position in the list sum) is set as the final

Cout. This is why the circuit requires nine LEDs.

And now we have reached the main part of the program:
use the Broadcom pin scheme
GPIO.setmode(GPIO.BCM)

setup the GPIO pins
gpio = setGPIO()

get a random num1 and display it to the console
num1 = setNum()
print " ", num1

get a random num2 and display it to the console
num2 = setNum()

Gourd, Irteza 14 Last modified: 29 Jan 2018

���

print "+ ", num2

calculate the sum of num1 + num2 and display it to the console
sum = calculate(num1, num2)
print "= ", sum

turn on the appropriate LEDs to "display" the sum
display()

wait for user input before cleaning up and resetting GPIO pins
raw_input("Press ENTER to terminate")
GPIO.cleanup()

The main part of the program first sets the GPIO output pins (connected to the LEDs) by calling the

function setGPIO. Again, this function defines a list that contains the pins corresponding to the nine

output LEDs. It then iterates over them (via a for loop) and sets them up as output pins. The list is then

returned to the main part of the program (note that the variable gpio contains this list).

Next, the first number is generated by calling the function setNum. Again, this function iteratively

builds a list of eight random bits. Once finished, the list is returned to the main part of the program

(note that the variable num1 contains this list). The same occurs for the second number. Note the use of

the randint function. It is imported through the random library. Its format is randint(x, y),

where x and y are the lower and upper values specified by the interval [x, y] to select a random integer

from. For example, randint(5, 44) selects a random integer from 5 to 44.

Next, the sum is calculated by calling the function calculate (passing in the two numbers as

parameters). Again, this function serves as the 8-bit adder that chains together eight full adders. It

cycles through the two numbers from right-to-left, each time (i.e., for each bit) calling the fullAdder

function. This function is provided Cin, A, and B as input parameters. It implements a full adder (made

up of two half adders) and calculates (and returns) values for S and Cout. .our task is to implement the

fullAdder function.

Finally, the display function is called, which turns on the appropriate LEDs that correspond to the

bits that are on (1) in the variable sum.

Note the raw_input function near the end of the program. You have previously seen the input

function (which allows user input to be provided and stored to a variable). The function raw_input is

similar; however, it treats any input as a string. The regular input function attempts to evaluate the

user input (which, for example, could be an integer). The function raw_input works in Python 2.7.x;

however, it has been removed in Python 3.x (which only has the input function).

Homework: Full Adder...Reloaded

Create the fullAdder function that implements a full adder (that is made up of two half adders). Of

course, you will also need to implement the program previously covered to test appropriately. Make

sure to use bitwise operators in your implementation of the full adder! A template is provided on

the class web site.

Gourd, Irteza 15 Last modified: 29 Jan 2018

���

�ou are to submit your Python source code only (as a .py file) through the upload facility on the

web site.

Gourd, Irteza 16 Last modified: 29 Jan 2018

���

The Science of Computing II Living with Cyber

Raspberry Pi Activity: The Reckoner

In this activity, you will implement a simple graphical calculator using the Tkinter library. You will

need the following items:

• Raspberry Pi B v3 with power adapter;

• LCD touchscreen; and

• Keyboard and mouse.

If you wish, you can simply bring your laptop with the Python interpreter (and also perhaps IDLE)

installed since you will not be using the GPIO pins on the RPi. Note, however, that the calculator is

specifically designed to illustrate an intuitive user interface for the LCD touchscreen included in your

RPi kit. Therefore, it is actually to your advantage to do the activity on the RPi and LCD touchscreen.

Let's begin by taking a look at a model of the GUI for The Reckoner:

() AC **

7 8 9 /

4 5 6 *

1 2 3 -

0 . = +

The top portion represents the display (i.e., where expressions and their results can be displayed). The

bottom portion includes various buttons that either represent operands (by combining the digits 0

through 9 and/or the decimal point), operators (that perform various arithmetic operations), or special-

purpose actions: clearing the display (AC) and evaluating expressions (=). The abbreviation AC on a

calculator stands for All Clear. For The Reckoner, it will clear the display. The ** operator is Python's

exponentiation operator (i.e., xy).

By clicking or tapping on the various buttons, simple or complex expressions can be displayed:

Gourd 1 Last modified: 28 Feb 2018

���

5+(4-2)**5+6*2

() AC **

7 8 9 /

4 5 6 *

1 2 3 -

0 . = +

By subsequently clicking or tapping on the equal button (=), the expression can be arithmetically

evaluated as follows:

49

() AC **

7 8 9 /

4 5 6 *

1 2 3 -

0 . = +

The font that is used in the calculator is called TexGyreAdventor. It is freely available and can be

obtained here: https://www.fontsquirrel.com/fonts/tex-gyre-adventor. Installing the font on the RPi is

relatively simple:

(1) Download the OTF files from the Web site above; and

(2) Copy the OTF files to the proper place on the RPi's file system.

To accomplish this (particularly at the command line/terminal), you may need to refer to the first

RPi activity in the curriculum: Sampling some Raspberry Pi.

You can either download the files directly to the RPi (e.g., into the Downloads folder) or on another

system – then copy them to the RPi using a USB stick, for example. To subsequently get them to install

on the RPi, simply copy them to the fonts folder from the terminal via:
sudo cp tex*.otf /usr/local/share/fonts

Then, reboot the RPi. Note that on most Linux systems (not the RPi), you can double-click the OTF

files and install them that way.

In this activity, we'll take an iterative approach to creating The Reckoner. First, we'll create the GUI and

ensure that it is correct before proceeding. We'll test and fix any issues before proceeding to the next

Gourd 2 Last modified: 28 Feb 2018

���

step: integrating code that will handle the button clicks/taps. As buttons are clicked/tapped, our program

must accurately detect which button was clicked/tapped and, furthermore, perform some action that is

appropriate for that specific button. Next, we'll work through and integrate evaluating the expression.

To simplify things a bit, we'll hand that off to Python! Since it is possible that an expression has errors

(e.g., mismatched parentheses, multiple consecutive operators, etc), we'll finally integrate error checking

so that user errors don't unexpectedly break our program.

Creating the GUI

To simplify creating the GUI, we'll use Tkinter's grid manager. Recall that it allows the placement of

widgets using a row/column approach. The display will be located at row 0, column 0, and span four

columns. The top row of buttons (“(“, “)”, “AC”, and “**”) will be located at row 1, columns 0 through

3. The remaining buttons will be placed in increasing rows, at columns 0 through 3. Here's the

calculator layout with row and column numbers:

0,0

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

4,0 4,1 4,2 4,3

5,0 5,1 5,2 5,3

Let's first work on a template for The Reckoner:
###
Name:
Date:
Description:
###
from Tkinter import *

the main GUI
class MainGUI(Frame):

...

##############################
the main part of the program
##############################
create the window
...
set the window title
...
generate the GUI
...

Gourd 3 Last modified: 28 Feb 2018

���

display the GUI and wait for user interaction
...

Note how this simply sets up a shell that we can work with. Of course, a header will be included at the

top. Since we will make use of the Tkinter library, it will have to be properly imported. Next, we'll

specify the class that will represent The Reckoner's main GUI (called MainGUI in the code above).

This class will be a Tkinter frame; therefore, it will inherit from Tkinter's Frame class. After the class,

we'll include the main part of the program – which is pretty simple. It creates the window, sets its title,

creates an instance of the MainGUI class (thereby generating the calculator GUI), and finally displays

the GUI and waits for user interaction.

Let's continue by specifying the constructor of the MainGUI class and also filling in the main part of the

program. New parts to the code are highlighted below:
class MainGUI(Frame):

the constructor
def __init__(self, parent):

Frame.__init__(self, parent, bg="white")
self.setupGUI()

sets up the GUI
def setupGUI(self):

pass

##############################
the main part of the program
##############################
create the window
window = Tk()
set the window title
window.title("The Reckoner")
generate the GUI
p = MainGUI(window)
display the GUI and wait for user interaction
window.mainloop()

Note how the constructor merely calls the constructor of its parent Frame class, passing in the window

and specifying the background color. Since the constructor makes use of a subroutine inside the

MainGUI class (setupGUI), we can quickly stub it out by adding the pass statement for now. At this

point, you should be able to run the program. It currently doesn't do very much; however, a small

window with the title “The Reckoner” should appear:

Gourd 4 Last modified: 28 Feb 2018

���

Now, let's implement the setupGUI method, replacing the single pass statement. The display will be

implemented as a Tkinter Label, and the buttons will each be implemented as a Tkinter Button. To

make the interface nifty, each button will be represented with an image (GIF) that has already been

designed and properly sized. Here's the first iteration of the setupGUI method that sets up the display:
def setupGUI(self):

the calculator uses the TexGyreAdventor font (see
https://www.fontsquirrel.com/fonts/tex-gyre-adventor)
on most Linux system, simply double-click the font files
and install them
on the RPi, copy them to /usr/local/share/fonts (with
sudo):
sudo cp tex*.otf /usr/local/share/fonts
then reboot

the display
right-align text in the display; and set its background to
white, its height to 2 characters, and its font to 50
point TexGyreAdventor
self.display = Label(self, text="", anchor=E, bg="white",\
 height=2, width=15, font=("TexGyreAdventor", 50))
put it in the top row, spanning across all four columns;
and expand it on all four sides
self.display.grid(row=0, column=0, columnspan=4,\
 sticky=E+W+N+S)

pack the GUI
self.pack(fill=BOTH, expand=1)

Note that the backslashes are used here to delineate individual statements without ugly text wrapping in

this document. In the actual code, backslashes can be omitted so that every statement is on a single line

of code.

Running the updated program should now display a window with the calculator's display:

Gourd 5 Last modified: 28 Feb 2018

���

Note that Tkinter's Label class can be instantiated with many configuration parameters. In the case of

the calculator's display, we set its text to nothing (i.e., “”); right-align the text with anchor=E; set its

background to white; set its height to 2 characters high; set its width to 15 characters wide; and set its

font to 50 point TexGyreAdventor. We then lay the display on a grid at row 0, column 0, spanning four

columns, and expanding it on all sides (using the sticky configuration option). Finally, the GUI is

packed such that the display fills the entire window space both horizontally and vertically.

Next, let's work on the buttons. Each button will be added to the calculator in its appropriate row and

column. Since each button will be represented by an image (e.g., 0.gif, 1.gif, eql.gif, add.gif, etc), we

can make use of Tkinter's PhotoImage class to “load” an image for each button. Button images are

115x115 pixels – which should be the perfect size for use on the RPi. The strategy will be to load the

image and store it as a variable (img), create the button with the image as its property, and set the button

in its proper layout position using Tkinter's grid manager. In general, here's how it's done for a button

(this example uses the left parenthesis as an example and also assumes that button images are in a sub-

folder called images):
img = PhotoImage(file="images/lpr.gif")
button = Button(self, bg="white", image=img)
button.image = img
button.grid(row=1, column=0, sticky=N+S+E+W)

The first line loads and scales the proper image, storing it to the variable img. The second line creates

the button, setting the image as its display property. Since the button images are colored and have

rounded corners, the background is set to white. The third line formally sets the button's image as the

preloaded image (recall why from the lesson on GUIs). The last line places the button on the frame in

its proper position along the grid, expanding it to fill its space in all directions. To make things look a

little bit better, we'll additionally remove any border around the button and set the background of the

button when it is active (i.e., clicked/tapped) to white.

Note that the display has been slightly modified so that it no longer has the width configuration option.

This is because the row of buttons will be wider than the display. By default, the display will be fitted to

the new width. Here's the entire first (top) row of buttons:
def setupGUI(self):

the calculator uses the TexGyreAdventor font (see
https://www.fontsquirrel.com/fonts/tex-gyre-adventor)

Gourd 6 Last modified: 28 Feb 2018

���

on most Linux system, simply double-click the font files
and install them
on the RPi, copy them to /usr/local/share/fonts (with
sudo):
sudo cp tex*.otf /usr/local/share/fonts
then reboot

the display
right-align text in the display; and set its background to
white, its height to 2 characters, and its font to 50
point TexGyreAdventor
self.display = Label(self, text="", anchor=E, bg="white",\
 height=2, font=("TexGyreAdventor", 50))
put it in the top row, spanning across all four columns;
and expand it on all four sides
self.display.grid(row=0, column=0, columnspan=4,\
 sticky=E+W+N+S)

the button layout
() AC **
7 8 9 /
4 5 6 *
1 2 3 -
0 . = +

the first row
(
first, fetch and store the image
to work best on the RPi, images should be 115x115 pixels
otherwise, may need to add .subsample(n)
img = PhotoImage(file="images/lpr.gif")
next, create the button (white background, no border, no
highlighting, no color when clicked)
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
set the button's image
button.image = img
put the button in its proper row and column
button.grid(row=1, column=0, sticky=N+S+E+W)
the same is done for the rest of the buttons

)
img = PhotoImage(file="images/rpr.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=1, column=1, sticky=N+S+E+W)
AC

Gourd 7 Last modified: 28 Feb 2018

���

img = PhotoImage(file="images/clr.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=1, column=2, sticky=N+S+E+W)
**
img = PhotoImage(file="images/pow.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=1, column=3, sticky=N+S+E+W)

pack the GUI
self.pack(fill=BOTH, expand=1)

Running the modified program should display a window with the calculator's display at the top and the

first row of buttons beneath the display (in the order “(“, “)”, “AC”, “**”):

Let's now add the remaining rows of buttons after the code for the first row (but before packing the

GUI):
the second row
7
img = PhotoImage(file="images/7.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=2, column=0, sticky=N+S+E+W)
8

Gourd 8 Last modified: 28 Feb 2018

���

img = PhotoImage(file="images/8.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=2, column=1, sticky=N+S+E+W)
9
img = PhotoImage(file="images/9.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=2, column=2, sticky=N+S+E+W)
/
img = PhotoImage(file="images/div.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=2, column=3, sticky=N+S+E+W)

the third row
4
img = PhotoImage(file="images/4.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=3, column=0, sticky=N+S+E+W)
5
img = PhotoImage(file="images/5.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=3, column=1, sticky=N+S+E+W)
6
img = PhotoImage(file="images/6.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=3, column=2, sticky=N+S+E+W)
*
img = PhotoImage(file="images/mul.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=3, column=3, sticky=N+S+E+W)

the fourth row
1
img = PhotoImage(file="images/1.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\

Gourd 9 Last modified: 28 Feb 2018

���

 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=4, column=0, sticky=N+S+E+W)
2
img = PhotoImage(file="images/2.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=4, column=1, sticky=N+S+E+W)
3
img = PhotoImage(file="images/3.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=4, column=2, sticky=N+S+E+W)
-
img = PhotoImage(file="images/sub.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=4, column=3, sticky=N+S+E+W)

the fifth row
0
img = PhotoImage(file="images/0.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=5, column=0, sticky=N+S+E+W)
.
img = PhotoImage(file="images/dot.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=5, column=1, sticky=N+S+E+W)
=
img = PhotoImage(file="images/eql.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=5, column=2, sticky=N+S+E+W)
+
img = PhotoImage(file="images/add.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white")
button.image = img
button.grid(row=5, column=3, sticky=N+S+E+W)

Gourd 10 Last modified: 28 Feb 2018

���

pack the GUI

self.pack(fill=BOTH, expand=1)

At this point, the calculator GUI is complete. The problem, however, is that it appears too large for the

RPi's LCD touchscreen. There are two reasons for this: (1) the rows and columns of the grid are fixed

based on the size of the button images; and (2) the rows and columns of the grid automatically expand to

fit the buttons. We can set the rows and columns to resize automatically so that they all fit on the

desktop by adding a few lines of code before creating the buttons:
configure the rows and columns of the Frame to adjust to
the window
there are 6 rows (0 through 5)
for row in range(6):

Grid.rowconfigure(self, row, weight=1)
there are 4 columns (0 through 3)
for col in range(4):

Grid.columnconfigure(self, col, weight=1)

the first row
(
img = PhotoImage(file="images/lpr.gif")
...

This indeed forces all of the buttons to be displayed on the desktop; however, things don't look pretty:

the buttons are all cut off. This is because the calculator is taller than it is wide – and the desktop is the

opposite: it is wider than it is tall. A solution is to render the calculator sideways! One way to do this is

by rotating the RPi's display 90 degrees to the left (counter-clockwise) – or 270 degrees to the right

(clockwise).

To force a rotation of the display, we need to edit the RPi's configuration from the terminal as follows:
sudo leafpad /boot/config.txt

Then, add the following line at the bottom of the file:
display_rotate=3

Finally, save the file (via Ctrl+S), exit the terminal, and reboot the RPi. You can set the RPi stand with

its (normally) right edge on the table to right the desktop (and the calculator when the modified program

is executed).

Although the calculator looks much better, it still seems a little off. This is because it was designed to be

executed in fullscreen mode (i.e., without the top window bar). To force it to launch in fullscreen mode,

add the following statement to the constructor of the MainGUI class:
def __init__(self, parent):

Frame.__init__(self, parent, bg="white")
parent.attributes("-fullscreen", True)
self.setupGUI()

Gourd 11 Last modified: 28 Feb 2018

���

The calculator should look as follows (except rendered sideways) when the program is now executed.

At this point, using the mouse to interact with the calculator works as expected. However, when using

the touchscreen directly (i.e., by tapping), something seems off! The point at which a tap occurs does

not correlate with the pointer on the desktop. This occurs because, although the display has been

rotated, the pointer responding to taps to the touchscreen has not! That is, the touchscreen's coordinate

system must also be rotated (or transformed to work along with the display's rotation). To do so, a utility

called xinput must be installed. First, exit the calculator via Alt+F4. Then, install xinput via the

terminal as follows (make sure that your RPi is connected to the Internet):
sudo apt-get update
sudo apt-get install xinput

Then, reboot. Subsequently, execute the following command at the terminal:
xinput --set-prop 'FT5406 memory based driver' 'Coordinate
 Transformation Matrix' 0 -1 1 1 0 0 0 0 1

Note that the command is to be entered on a single line. It is formatted for readability in this document.

This transforms the touchscreen's coordinate system to one that represents a 90 degree left (counter-

clockwise) rotation. To use the touchscreen in rotated mode, you will need to execute this command

each time the RPi is rebooted. There is a way to automate the process; however, it is beyond the scope

Gourd 12 Last modified: 28 Feb 2018

���

of this activity.

If you wish to run the calculator on a desktop or laptop (i.e., not on the RPi), you most likely won't need

to rotate the display. Furthermore, you most likely won't need to force the calculator to launch in

fullscreen mode. Therefore, you can comment out the appropriate line of code in your program. If you

wish to return the RPi to its normal “wide” desktop, you simply need to comment (with #) or remove the

last line that was added to /boot/config.txt.

Making the buttons work

Of course, the buttons currently do nothing. Let's work on that next. In Tkinter, buttons can have a

method specified that is triggered (or called) when the button is clicked. To do this, we simply need to

slightly modify each button's instantiation. Here's an example with the first button in the top row (the

left parenthesis):
(
img = PhotoImage(file="images/lpr.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white",\
 command=self.process)
button.image = img
button.grid(row=1, column=0, sticky=N+S+E+W)

Of course, this will need to be implemented for all of the buttons. In order for this to actually work, the

process method must be implemented. We can include a simple version of this new method at the

bottom of the MainGUI class, beneath the setupGUI method:
def setupGUI(self):

...

pack the GUI
self.pack(fill=BOTH, expand=1)

processes button presses
def process(self):

print "Button pressed!"

After implementing this for all of the buttons, running the updated program and clicking/tapping on the

buttons results in “Button pressed!” being displayed to the console. On the RPi, the calculator is

fullscreen mode; therefore, the console may not be visible. You can use Alt+Tab to switch through any

windows on the desktop, including the console (terminal) and the calculator. Knowing when the buttons

are clicked/tapped is useful; however, it is necessary to distinguish between the individual buttons (i.e.,

know which was clicked/tapped). A first thought may be to modify the command configuration option

in each button's instantiation to include a parameter:
(
img = PhotoImage(file="images/lpr.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white",\
 command=self.process("("))
button.image = img

Gourd 13 Last modified: 28 Feb 2018

���

button.grid(row=1, column=0, sticky=N+S+E+W)

Of course, the process method must be updated accordingly:
processes button presses
def process(self, button):

print "Button {} pressed!".format(button)

Clearly, each button must provide its own unique parameter to the process method (e.g., “0” for 0, “1”

for 1, “AC” for AC, “=” for =, “**” for **, “/” for /, etc). Unfortunately, running the updated program

doesn't seem to work. The button clicks/taps seem to be displayed when the program is first run and not

when individual buttons are actually clicked/tapped.

The problem stems from the fact that, as the buttons are instantiated, the process method is immediately

invoked. To delay invocation of the process method, it must be anonymously defined using the lambda

Python keyword. A thorough discussion of the lambda keyword is beyond the scope of this activity;

however, in this case it allows the process method to be invoked at the time of the button click/tap. Let's

modify each of the command configuration options appropriately. Here's an example of this

modification to the left parenthesis (of course, the remaining buttons must be modified accordingly):
(
img = PhotoImage(file="images/lpr.gif")
button = Button(self, bg="white", image=img, borderwidth=0,\
 highlightthickness=0, activebackground="white",\
 command=lambda: self.process("("))
button.image = img
button.grid(row=1, column=0, sticky=N+S+E+W)

Running the modified program should display text appropriate to a clicked/tapped button (as it is

clicked/tapped).

The next step is to update the process method so that it actually behaves properly depending on the

button that is clicked/tapped. We can implement simple logic to accomplish this. Almost all of the

buttons, when clicked/tapped, should just be added to the display. The two exceptions include the AC

and equals (=) buttons. AC should clear the display, and = should evaluate the expression and update the

display with the result. Let's start with the AC button since it's perhaps the simplest case. Change the

process method as follows:
processes button presses
def process(self, button):

AC clears the display
if (button == "AC"):

clear the display
self.display["text"] = ""

The display is cleared by changing its text attribute. In Python, associative arrays (i.e., arrays with

named indexes as opposed to numeric indexes) are valid. Although you probably haven't seen

associative arrays yet, you will later in the curriculum (Python calls them dictionaries).

The next case is to handle the various buttons that should just be appended to the display. Modify the

Gourd 14 Last modified: 28 Feb 2018

���

process method as follows:
processes button presses
def process(self, button):

AC clears the display
if (button == "AC"):

clear the display
self.display["text"] = ""

otherwise, just tack on the appropriate operand/operator
else:

self.display["text"] += button

Notice how the last line appends the button parameter to the text already on the display. Running the

modified program now allows the calculator to behave as expected. The AC button clears the display,

while the other buttons (including, for now, the equals button) are appended to the display in the order

that they are clicked/tapped. Of course, this is not the intended behavior of the equals button!

Evaluating expressions

Finally, we must discuss the equals (=) button. How, exactly, should this work? Admittedly, we could

manually calculate the expression and return a result. However, Python provides the eval function that

takes a string, evaluates it as an arithmetic expression, and returns a numeric result. Here are several

examples:
eval("1+1") # the returned result is 2
eval("5+(4-2)**5+6*2") # the returned result is 49

Evaluating the expression on the display is now pretty simple! We just need to send the expression to

Python's eval function to get a numeric result. Then, we can change the display, replacing it with a

string version of the returned result. It looks something like this:
expr = self.display["text"]
result = eval(expr)
self.display["text"] = str(result)

The first line stores the expression from the display to the variable expr, the second line evaluates the

expression with Python's eval function, and the third line stores the result (as a string) back to the

display. Of course, the three lines could be combined into a single statement; however, it is probably

slightly less readable:
self.display["text"] = str(eval(self.display["text"]))

Let's implement the evaluation portion by modifying the process method as follows:
processes button presses
def process(self, button):

AC clears the display
if (button == "AC"):

clear the display
self.display["text"] = ""

= starts an evaluation of whatever is on the display
elif (button == "="):

get the expression in the display

Gourd 15 Last modified: 28 Feb 2018

���

expr = self.display["text"]
evaluate the expression
result = eval(expr)
store the result to the display
self.display["text"] = str(result)

otherwise, just tack on the appropriate operand/operator
else:

self.display["text"] += button

At this point, a valid arithmetic expression in the display will be properly evaluated and updated with the

result. But what if the expression in the display is not valid? For example, what is the result of the

expression 4 + 5 * (note the missing operand after the multiplication operator)? In fact, an error is

outputted to the console (note that errors on different systems may differ slightly):
Exception in Tkinter callback
Traceback (most recent call last):
 File "/usr/lib/python2.7/lib-tk/Tkinter.py", line 1489, ...
 return self.func(*args)
 File "TheReckoner-TEMPLATE9.py", line 132, in <lambda>
 button = Button(self, bg="white", image=img, command=...
 File "TheReckoner-TEMPLATE9.py", line 154, in process
 result = eval(expr)
 File "<string>", line 1
 4+5*
 ^
SyntaxError: unexpected EOF while parsing

Evidently, there was an unexpected EOF (end of file) while parsing the expression. Of course, this

makes sense: the end of the expression was reached before a valid expression was provided. That is, the

eval function expected more to the expression. To make the calculator more robust, we can detect such

errors and provide an appropriate response to the user. This can be accomplished by using a try-except

block (you should have seen this before!). The purpose of a try-except block is to encapsulate

instructions that could cause an exception (something that alters the normal flow of a program) in a try

block. If an exception occurs, it can be handled in the except block. More details about try-except will

be covered later in the curriculum.

Let's handle any invalid expression evaluation by setting the calculator's display to the string ERROR so

that the user is aware that an error occurred. This can be accomplished by modifying the process

method as follows:
get the expression in the display
expr = self.display["text"]
the evaluation may return an error!
try:

evaluate the expression
result = eval(expr)
store the result to the display
self.display["text"] = str(result)

handle if an error occurs during evaluation

Gourd 16 Last modified: 28 Feb 2018

���

except:
note the error in the display
self.display["text"] = "ERROR"

Note that the evaluation of the expression (into the variable result) and the subsequent modification of

the display with the result is done in the try block. If this results in an error, the except block is

executed, setting the contents of the display to the string ERROR.

Congratulations, you've made a simple calculator! Indeed, it's basic; however, there are many

improvements that could be made:

• The length of the display supports approximately 12 characters; however, more characters could

be added to the display by the user. Doing so results in a cropped expression, which is probably

not desired. The display could be limited to 12 characters, ignoring any further input. Moreover,

the result of an expression could be larger than 12 characters. Perhaps such results could be

truncated.

• There is no easy way to erase the last character entered of an expression in the display. Adding a

back button to the calculator could allow this in case the user makes an error.

• Other useful operators could be added. For example: modulus (%), square root, logarithm (log),

natural logarithm (ln), factorial (!), sine, cosine, tangent, and constants such as pi and e. Take

look at the Google calculator (search for “calculator” on Google). Of course, Python's eval

function must support these (you'll have to try them out!).

• Most calculators clear any previous expression result if the user enters a new expression. For

example, suppose that the display has the result of an expression. If the user decides to enter a

different expression, the display must first be cleared. Currently, the user must do this manually

(by pressing the AC button). Perhaps the display could be automatically cleared of an expression

result if the user begins to enter a new expression.

• Similarly, perhaps the display could be cleared of an error if the user begins to enter a new

expression.

For completeness, here's the entire code (reduced in font size for readability):
from Tkinter import *

the main GUI
class MainGUI(Frame):

the constructor
def __init__(self, parent):

Frame.__init__(self, parent, bg="white")
parent.attributes("-fullscreen", True)
self.setupGUI()

sets up the GUI
def setupGUI(self):

the calculator uses the TexGyreAdventor font (see
https://www.fontsquirrel.com/fonts/tex-gyre-adventor)
on most Linux system, simply double-click the font
files and install them
on the RPi, copy them to /usr/local/share/fonts (with

Gourd 17 Last modified: 28 Feb 2018

���

sudo):
sudo cp tex*.otf /usr/local/share/fonts
then reboot

the display
right-align text in the display; and set its
background to white, its height to 2 characters, and
its font to 50 point TexGyreAdventor
self.display = Label(self, text="", anchor=E,\
 bg="white", height=2, font=("TexGyreAdventor", 50))
put it in the top row, spanning across all four
columns; and expand it on all four sides
self.display.grid(row=0, column=0, columnspan=4,\
 sticky=E+W+N+S)

the button layout
() AC **
7 8 9 /
4 5 6 *
1 2 3 -
0 . = +

configure the rows and columns of the Frame to adjust
to the window
there are 6 rows (0 through 5)
for row in range(6):

Grid.rowconfigure(self, row, weight=1)
there are 4 columns (0 through 3)
for col in range(4):

Grid.columnconfigure(self, col, weight=1)

the first row
(
first, fetch and store the image
to work best on the RPi, images should be 115x115
pixels
otherwise, may need to add .subsample(n)
img = PhotoImage(file="images/lpr.gif")
next, create the button (white background, no border,
no highlighting, no color when clicked)
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("("))
set the button's image
button.image = img
put the button in its proper row and column
button.grid(row=1, column=0, sticky=N+S+E+W)

Gourd 18 Last modified: 28 Feb 2018

���

the same is done for the rest of the buttons
)
img = PhotoImage(file="images/rpr.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process(")"))
button.image = img
button.grid(row=1, column=1, sticky=N+S+E+W)
AC
img = PhotoImage(file="images/clr.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("AC"))
button.image = img
button.grid(row=1, column=2, sticky=N+S+E+W)
**
img = PhotoImage(file="images/pow.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("**"))
button.image = img
button.grid(row=1, column=3, sticky=N+S+E+W)

the second row
7
img = PhotoImage(file="images/7.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("7"))
button.image = img
button.grid(row=2, column=0, sticky=N+S+E+W)
8
img = PhotoImage(file="images/8.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("8"))
button.image = img
button.grid(row=2, column=1, sticky=N+S+E+W)
9
img = PhotoImage(file="images/9.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\

Gourd 19 Last modified: 28 Feb 2018

���

 self.process("9"))
button.image = img
button.grid(row=2, column=2, sticky=N+S+E+W)
/
img = PhotoImage(file="images/div.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("/"))
button.image = img
button.grid(row=2, column=3, sticky=N+S+E+W)

the third row
4
img = PhotoImage(file="images/4.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("4"))
button.image = img
button.grid(row=3, column=0, sticky=N+S+E+W)
5
img = PhotoImage(file="images/5.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("5"))
button.image = img
button.grid(row=3, column=1, sticky=N+S+E+W)
6
img = PhotoImage(file="images/6.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("6"))
button.image = img
button.grid(row=3, column=2, sticky=N+S+E+W)
*
img = PhotoImage(file="images/mul.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("*"))
button.image = img
button.grid(row=3, column=3, sticky=N+S+E+W)

the fourth row
1

Gourd 20 Last modified: 28 Feb 2018

���

img = PhotoImage(file="images/1.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("1"))
button.image = img
button.grid(row=4, column=0, sticky=N+S+E+W)
2
img = PhotoImage(file="images/2.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("2"))
button.image = img
button.grid(row=4, column=1, sticky=N+S+E+W)
3
img = PhotoImage(file="images/3.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("3"))
button.image = img
button.grid(row=4, column=2, sticky=N+S+E+W)
-
img = PhotoImage(file="images/sub.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("-"))
button.image = img
button.grid(row=4, column=3, sticky=N+S+E+W)

the fifth row
0
img = PhotoImage(file="images/0.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("0"))
button.image = img
button.grid(row=5, column=0, sticky=N+S+E+W)
.
img = PhotoImage(file="images/dot.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("."))
button.image = img

Gourd 21 Last modified: 28 Feb 2018

���

button.grid(row=5, column=1, sticky=N+S+E+W)
=
img = PhotoImage(file="images/eql.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("="))
button.image = img
button.grid(row=5, column=2, sticky=N+S+E+W)
+
img = PhotoImage(file="images/add.gif")
button = Button(self, bg="white", image=img,\
 borderwidth=0, highlightthickness=0,\
 activebackground="white", command=lambda:\
 self.process("+"))
button.image = img
button.grid(row=5, column=3, sticky=N+S+E+W)

pack the GUI
self.pack(fill=BOTH, expand=1)

processes button presses
def process(self, button):

AC clears the display
if (button == "AC"):

clear the display
self.display["text"] = ""

= starts an evaluation of whatever is on the display
elif (button == "="):

get the expression in the display
expr = self.display["text"]
the evaluation may return an error!
try:

evaluate the expression
result = eval(expr)
store the result to the display
self.display["text"] = str(result)

handle if an error occurs during evaluation
except:

note the error in the display
self.display["text"] = "ERROR"

otherwise, just tack on the appropriate
operand/operator
else:

self.display["text"] += button

##############################
the main part of the program

Gourd 22 Last modified: 28 Feb 2018

���

##############################
create the window
window = Tk()
set the window title
window.title("The Reckoner")
generate the GUI
p = MainGUI(window)
display the GUI and wait for user interaction
window.mainloop()

Homework: The Reckoner

For the homework portion of this activity, you may have the option to work in groups (pending prof

approval). It is suggested that groups contain at least one confident Python coder.

Your task is to implement the following improvements to the calculator:

(1) Add a modulus (%) button that calculates the remainder returned by a division. For example:

23 % 13 = 10.

(2) Add a back button that removes the last (i.e., right-most) character in the display.

(3) Modify the layout as follows to accommodate the new buttons:

() AC ←

7 8 9 /

4 5 6 *

1 2 3 -

0 . +

= ** %

See below for what that should look like on the RPi.

(4) Limit the display to 14 characters. Do not allow the user to enter more than 14 characters.

(5) Any result that is greater than 14 characters should be truncated to the first 11 characters

followed by three successive dots. For example: 2 ** 47 = 14073748835...

(6) If an expression result (or an error) has just been put on the display, clear the screen before

displaying the next character inputted by the user.

A few notes:

• The calculator has now increased by one row. This has the unfortunate effect of no longer

properly rendering the calculator on the LCD touchscreen. To fix this, we can reduce the font

size of text in the display from 50 point to 45 point. Furthermore, we can reduce the height of

the display from two characters to one character.

Gourd 23 Last modified: 28 Feb 2018

���

• The equals (=) button now spans two columns. You will have to download the new image for

this button.

• There is now a blank “button” on the calculator. Feel free to just leave this “button” blank.

Do not make any additional improvements to your submission for this assignment. However, feel

free to do so on your own if you wish (although you may need to recreate the buttons if you choose to

add more rows or columns to the calculator).

You are to submit your Python source code only (as a .py file) through the upload facility on the

web site.

Gourd 24 Last modified: 28 Feb 2018

���

The Science of Computing II Living with Cyber

Raspberry Pi Activity: Simon

In this activity, you will implement a game that is similar to the popular (well, years ago anyways) game

called Simon. Simon is an electronic memory skill game. Here's an image of the game as manufactured

by Milton Bradley:

The game board is circular and has four large buttons that light up, each of a different color. Each color

button has a musical note or tone associated with it. The game begins by randomly picking one (or

sometimes two or even three) random colors. These randomly chosen colors are called a sequence. The

game then plays the sequence by lighting up the appropriate colored buttons and playing the

corresponding notes. The player then tries to replicate the sequence exactly. Any mistake, and the game

ends. Each time the player successfully plays a sequence and matches the randomly selected colors, the

sequence grows by an extra color.

For this activity, you will need the following items:

• Raspberry Pi B v3 with power adapter;

• LCD touchscreen;

• Keyboard and mouse;

• USB-powered speakers;

• Breadboard;

• GPIO interface board with ribbon cable; and

• LEDs, resistors, switches, and jumper wires provided in your kit.

Regarding the electronic components, you will need the following:

• 1x red LED;

• 1x blue LED;

• 1x yellow LED;

• 1x green LED;

Gourd 1 Last modified: 23 Feb 2018

���

• 4x push-button switches;

• 4x 220Ω resistors; and

• 16x jumper wires.

The circuit

To begin, implement the following circuit:

Although you can wire the LEDs to different GPIO pins on the RPi, it will be easier if you follow the

circuit diagram shown above because it will match the source code provided. Also, try to keep enough

space for four push-button switches in between the GPIO-to-breadboard interface and the LEDs. This

will make it easier to implement the other parts of this activity. Here's one way to layout the circuit:

If you have the black GPIO interface, layout the circuit as follows instead:

Gourd 2 Last modified: 23 Feb 2018

���

For this part of the activity, you will simply turn the LEDs on, one at a time. As each LED is turned on,

a corresponding note will play. You will use the Pygame library to play the notes. Pygame is a set of

Python libraries that are useful for making games. For this activity, you will make use of its multimedia

support (specifically, the ability to play sound files).

To play the notes, you will first need to obtain four sound files located on the class web site:
• one.wav

• two.wav

• three.wav

• four.wav

It is recommended that you create a folder for this activity and place the sound files there.

To hear the notes being played, you will need to use the USB-powered speakers. Connect the USB

cable from the speakers to an open USB port on the RPi, and connect the audio cable from the speakers

to the audio jack as shown below:

Gourd 3 Last modified: 23 Feb 2018

���

Turning the LEDs on and making noise!

Either using IDLE or a text editor, type the following Python code and save it to a file in the same folder

as the sound files that you downloaded and saved earlier:
 1 import RPi.GPIO as GPIO
 2 from time import sleep
 3 import pygame

 4 # initialize the pygame library
 5 pygame.init()

 6 # set the GPIO pin numbers
 7 # the LEDs (from L to R)
 8 leds = [6, 13, 19, 21]
 9 # the sounds that map to each LED (from L to R)
10 sounds = [pygame.mixer.Sound("one.wav"),

pygame.mixer.Sound("two.wav"),
pygame.mixer.Sound("three.wav"),
pygame.mixer.Sound("four.wav")]

11 # use the Broadcom pin mode
12 GPIO.setmode(GPIO.BCM)

13 # setup the output pins

Gourd 4 Last modified: 23 Feb 2018

���

14 GPIO.setup(leds, GPIO.OUT)

15 print "Watch the LEDs light with sound!"
16 for i in range(len(leds)):
17 # light the current LED
18 GPIO.output(leds[i], True)
19 # play its corresponding sound
20 sounds[i].play()
21 # wait a bit, then turn the LED off
22 sleep(1)
23 GPIO.output(leds[i], False)
24 sleep(0.5)
25 print "Sionara!"
26 GPIO.cleanup()

Let's explain the program. In lines 1 through 3, required libraries are imported. For this activity, we

need GPIO functionality (since we're turning on LEDs), the sleep function (to implement delays), and

the Pygame library (to play the sound files).

In order to to use the modules in the Pygame library, it must first be initialized. This is done in line 5.

The next step is to setup the GPIO output pins that are wired to the LEDs in a list (in line 8). For this

activity, the LEDs are wired to pins GP6= P22 (red), GP13= P23 (blue), GP19= P24 (yellow), and

GP21= P29 (green). The sound files are also defined in a list and preloaded for later use (in line 10). In

lines 11 through 14, the GPIO pin mode is specified, and the GPIO pins wired to the LEDs are setup as

output pins.

The remainder of the source code (lines 15 through 25) turns each LED on, one at a time, plays each

LED's corresponding sound file, waits a few moments, and turns the LED off. If you need a refresher on

GPIO in Python, it is suggested that you go back to Raspberry Pi Activity 2: My Binary

Addiction...Reloaded. Line 26 cleans up the GPIO pins ands resets them to their defaults.

Get this part working before going on to the next part of the activity. Make sure that you see the LEDs

turning on and off and hear the notes playing as each LED is briefly turned on. If the speakers aren't

working, you can try the following:

(1) Make sure that both the speaker's USB and audio cables are plugged in.

(2) Make sure that the sound files are in the same folder as your .py source file.

(3) Make sure that the sound files are spelled correctly (as they are named in the folder) in your

source code. Remember that filenames are cl se sensitive!

(4) Make sure that the audio configuration on the RPi is set to output to the analog 3.5mm

(headphone) jack. To do this, right-click on the speaker icon at the upper right of the desktop

and select Analog.

(5) Make sure that the volume wheel on the back of one of the speakers is turned to the left (not

quite all the way) and that the volume on the RPi is close (but not all the way) to its maximum

(click on the speaker icon to set the volume on the RPi).

(6) If you still have problems, open up a terminal (by clicking on the monitor icon at the upper left

of the desktop) and type amixer set PCM -- 100%.

Gourd 5 Last modified: 23 Feb 2018

���

(7) If you can hear the notes but they seem broken (e.g., with pops and clicks), you may need to turn

the volume down on the speakers. Do this by sliding the volume wheel on the back of one of the

speakers to the right a little until the notes are clean. Another option is to reduce the volume on

the RPi by modifying the percentage value in the following terminal command: amixer set

PCM – 100%. Try changing it to 85%, 75%, and so on, until the notes are clean.

Adding switches

Extend your circuit to include four push-button switches. For this part of the activity, you will modify

the previous circuit so that four push-button switches control the four LEDs. Pushing on the switches

will turn on the appropriate LEDs and play the corresponding notes.

Add four switches to your circuit as show below:

Here's one way to layout this circuit:

If you have the black GPIO interface, layout the circuit as follows instead:

Gourd 6 Last modified: 23 Feb 2018

���

Make sure that the switches are wired to +3.3V on one side and to an appropriate GPIO pin on the other

side (GP26=P25, GP12=P26, GP16=P27, GP20= P28 in the figures above). The input pins will be

pulled down (i.e., 0V) by default, and pushing on the switches will drive the input pins high. The goal

will be to detect when this occurs so that the appropriate LED can be turned on.

You will now create a new Python program. Make sure that it is also saved in the same folder as the

sound files that were downloaded earlier. In IDLE or a text editor, type in the following new program:
 1 import RPi.GPIO as GPIO
 2 from time import sleep
 3 import pygame

 4 # initialize the pygame library
 5 pygame.init()

 6 # set the GPIO pin numbers
 7 # the switches (from L to R)
 8 switches = [20, 16, 12, 26]
 9 # the LEDs (from L to R)
10 leds = [6, 13, 19, 21]
11 # the sounds that map to each LED (from L to R)
12 sounds = [pygame.mixer.Sound("one.wav"),

pygame.mixer.Sound("two.wav"),
pygame.mixer.Sound("three.wav"),
pygame.mixer.Sound("four.wav")]

13 # use the Broadcom pin mode
14 GPIO.setmode(GPIO.BCM)

15 # setup the input and output pins
16 GPIO.setup(switches, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
17 GPIO.setup(leds, GPIO.OUT)

18 print "Press the switches or Ctrl+C to exit..."

Gourd 7 Last modified: 23 Feb 2018

���

19 # we'll discuss this later, but this allows us to detect
20 # when Ctrl+C is pressed so that we can reset the GPIO pins
21 try:
22 # keep going until the user presses Ctrl+C
23 while (True):
24 # initially note that no switch is pressed
25 # this will help with switch debouncing
26 pressed = False
27 # so long as no switch is currently pressed...
28 while (not pressed):
29 # ...we can check the status of each switch
30 for i in range(len(switches)):
31 # if one switch is pressed
32 while (GPIO.input(switches[i]) == True):
33 # note its index
34 val = i
35 # note that a switch has now been

 pressed
36 pressed = True

37 # light the matching LED
38 GPIO.output(leds[val], True)
39 # play its corresponding sound
40 sounds[val].play()
41 # wait and turn the LED off again
42 sleep(1)
43 GPIO.output(leds[val], False)
44 sleep(0.25)
45 # detect Ctrl+C
46 except KeyboardInterrupt:
47 # reset the GPIO pins
48 GPIO.cleanup()
49 print "\nSionara!"

You should notice that some of this new program is similar to the previous one. The first difference is

that a new list is defined that stores the GPIO pins that are wired to the push-button switches (in line 8).

Make sure that the specified GPIO pins match the connections on your breadboard.

Since we now have input pins, they need to be defined as such. This is done in line 16. Note that the

input pins are pulled down by default.

Note the try-except construct (lines 21 and 46). Although you should have seen this before, it hasn't yet

been thoroughly explained. Essentially, a try-except construct encapsulates any part of a Python

program that could potentially experience abnormal program behavior. In this case, the goal is to detect

when a user presses Ctrl+C. If this key combination is detected, we wish to reset the GPIO pins

(thereby resetting them to their defaults), and exit the program (lines 48 through 49).

Gourd 8 Last modified: 23 Feb 2018

���

The goal of the program is to continually wait for a switch to be pressed. When one is pressed, the

program tries to detect which one it is, and light the appropriate LED. After a brief moment, the

program should wait for another switch to be pressed. The only way to end the program is to press

Ctrl+C. To check for switch presses indefinitely, the program uses a while loop. Note the condition of

this while loop in line 23. Since the condition is always true, the while loop executes forever! But this

is OK, since we are allowing Ctrl+C to abort and exit the program.

When reading switch presses, we must worry about an issue called debouncing. Switch debouncing

prevents a single press of a push-button switch from appearing like multiple presses. This is something

that we generally have to live with when using switches in digital circuits. The tactic in this program is

to utilize a Boolean variable called pressed that detects when any one of the switches is pressed.

Initially, it is set to false (i.e., no switch is pressed) in line 26. The while loop beginning at line 28 is

then entered. When any one of the switches is pressed, the variable is toggled to true (line 36). This

breaks control out of the while loop, allowing the appropriate LED to be turned on and the

corresponding note to be played (lines 37 through 44). Since the variable is toggled to true, then no

other switch press can be detected until it is reset to false.

Detecting which switch is pressed (if any), is done in the for loop beginning at line 30. The program

checks the state of each switch, one by one (line 32). While any switch is pressed (i.e., its wired input

pin is high), its index is noted (line 34). A switch's index corresponds to the index of the LED in the list

of LEDs that it controls (and the sound file that should be played). Once a switch press has been

detected, the variable pressed is set to true in line 36 (which breaks out of the while loop beginning at

line 28).

Again, once a switch has been pressed, the appropriate LED is turned on, and the corresponding sound

file is played (lines 37 through 40). After a brief moment, the LED is turned back off (lines 41 through

44), and the outer while loop beginning at line 23 begins again.

Get this part working before going on to the next part of the activity. Make sure that you see the LEDs

turning on and off as you press the switches. Make sure that you hear the notes playing as each LED is

briefly turned on.

Simon

The parts of the activity that you have already implemented provide almost all that is needed to lay the

base for the game. The only thing left to add is a way to generate a random sequence of colors, allow

the player to push buttons that correspond the to sequence, check if the player's sequence matches the

one in the game, and either grow the sequence or end the game!

First, here's the code:
 1 import RPi.GPIO as GPIO
 2 from time import sleep
 3 from random import randint
 4 import pygame

 5 # set to True to enable debugging output
 6 DEBUG = False

Gourd 9 Last modified: 23 Feb 2018

���

 7 # initialize the pygame library
 8 pygame.init()

 9 # set the GPIO pin numbers
 10 # the switches (from L to R)
 11 switches = [20, 16, 12, 26]
 12 # the LEDs (from L to R)
 13 leds = [6, 13, 19, 21]
 14 # the sounds that map to each LED (from L to R)
 15 sounds = [pygame.mixer.Sound("one.wav"),

pygame.mixer.Sound("two.wav"),
pygame.mixer.Sound("three.wav"),
pygame.mixer.Sound("four.wav")]

 16 # use the Broadcom pin mode
 17 GPIO.setmode(GPIO.BCM)

 18 # setup the input and output pins
 19 GPIO.setup(switches, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
 20 GPIO.setup(leds, GPIO.OUT)

 21 # this function turns the LEDs on
 22 def all_on():
 23 for i in leds:
 24 GPIO.output(leds, True)

 25 # this function turns the LEDs off
 26 def all_off():
 27 for i in leds:
 28 GPIO.output(leds, False)

 29 # this functions flashes the LEDs a few times when the
 player loses the game

 30 def lose():
 31 for i in range(0, 4):
 32 all_on()
 33 sleep(0.5)
 34 all_off()
 35 sleep(0.5)

 36 # the main part of the program
 37 # initialize the Simon sequence
 38 # each item in the sequence represents an LED (or switch),

 indexed at 0 through 3
 39 seq = []
 40 # randomly add the first two items to the sequence
 41 seq.append(randint(0, 3))

Gourd 10 Last modified: 23 Feb 2018

���

 42 seq.append(randint(0, 3))

 43 print "Welcome to Simon!"
 44 print "Try to play the sequence back by pressing the

switches."
 45 print "Press Ctrl+C to exit..."

 46 # we'll discuss this later, but this allows us to detect
 47 # when Ctrl+C is pressed so that we can reset the GPIO pins
 48 try:
 49 # keep going until the user presses Ctrl+C
 50 while (True):
 51 # randomly add one more item to the sequence
 52 seq.append(randint(0, 3))
 53 if (DEBUG):
 54 # display the sequence to the console
 55 if (len(seq) > 3):
 56 print
 57 print "seq={}".format(seq)

 58 # display the sequence using the LEDs
 59 for s in seq:
 60 # turn the appropriate LED on
 61 GPIO.output(leds[s], True)
 62 # play its corresponding sound
 63 sounds[s].play()
 64 # wait and turn the LED off again
 65 sleep(1)
 66 GPIO.output(leds[s], False)
 67 sleep(0.5)

 68 # wait for player input (via the switches)
 69 # initialize the count of switches pressed to 0
 70 switch_count = 0
 71 # keep accepting player input until the number of

 items in the sequence is reached
 72 while (switch_count < len(seq)):
 73 # initially note that no switch is pressed
 74 # this will help with switch debouncing
 75 pressed = False
 76 # so long as no switch is currently

 pressed...
 77 while (not pressed):
 78 # ...we can check the status of each

 switch
 79 for i in range(len(switches)):
 80 # if one switch is pressed
 81 while (GPIO.input(switches[i]) ==

Gourd 11 Last modified: 23 Feb 2018

���

True):
 82 # note its index
 83 val = i
 84 # note that a switch has now

 been pressed
 85 # so that we don't detect any more

 switch presses
 86 pressed = True

 87 if (DEBUG):
 88 # display the index of the switch

 pressed
 89 print val,

 90 # light the matching LED
 91 GPIO.output(leds[val], True)
 92 # play its corresponding sound
 93 sounds[val].play()
 94 # wait and turn the LED off again
 95 sleep(1)
 96 GPIO.output(leds[val], False)
 97 sleep(0.25)

 98 # check to see if this LED is correct in the
 sequence

 99 if (val != seq[switch_count]):
100 # player is incorrect; invoke the lose

 function
101 lose()
102 # reset the GPIO pins
103 GPIO.cleanup()
104 # exit the game
105 exit(0)

106 # if the player has this item in the sequence
 correct, increment the count

107 switch_count += 1
108 # detect Ctrl+C
109 except KeyboardInterrupt:
110 # reset the GPIO pins
111 GPIO.cleanup()

To support randomly generating the sequence, the random library is imported in line 3. Also, it is often

useful to display debugging information while developing applications. In the case of Simon, it is useful

to show the randomly generated sequence, and the player's submitted sequence. This can help during

testing. The debug variable is set in line 6. When it is set to false, no debugging information is shown.

Gourd 12 Last modified: 23 Feb 2018

���

Lines 7 through 20 are the same as the last part of this activity. Lines 21 through 35 define three new

functions. The first simply turns all of the LEDs on. The second turns all of the LEDs off. The third is

invoked when the player loses the game. This function blinks all of the LEDs a few times before the

game ends.

Lines 39 through 42 setup the empty sequence and add two random colors to the sequence. After some

short introduction text, the game officially begins with the while loop beginning at line 50.

Each time the while loop iterates, a new random color is added to the sequence (line 52). If debugging

is enabled, the sequence is then displayed to the console (lines 55 through 57). The game then displays

the sequence, turning on the appropriate LEDs and playing the corresponding notes, one by one (lines 59

through 67).

Since we now want to detect the pressing of multiple switches sequentially (i.e., we need to detect the

player's submission for the entire sequence), a counter is initialized (line 70) and is increased each time

the player presses a switch (later in line 107). The program accepts as many switch presses as there are

colors in the sequence (line 72). The detection of which switch is pressed is the same as in the previous

part of the activity (lines 75 through 86). If debugging is enabled, the index of the pressed switch is

displayed to the console (line 89).

Lines 90 through 97 turn the LED on that corresponds to the player's switch press, plays the

corresponding note, waits a brief moment, then turns the LED off. Line 99 then checks to make sure

that the player's switch press is indeed the right one in the sequence. If not, the player loses and the

game ends (lines 101 through 105).

Homework: Simon

For the homework portion of this activity, you may have the option to work in groups (pending prof

approval). It is suggested that groups contain at least one confident Python coder.

The first part of this activity is to implement the Simon program in this activity. Please work to

understand the algorithm and source code instead of merely typing it in (or, worse, using a copy/paste

process). Once your Simon game is working properly, you can move on the the second part of this

activity.

For the second part of this activity, you must implement several improvements:

(1) A scoring mechanism. When the player makes a mistake and the game ends, output a message

similar to, “You made it to a sequence of 9!” Remember that failing at the start should output

something like, “You made it to a sequence of 0!” or, “You didn't even make it to a sequence!”

(2) Over time, increase the speed of the playing sequence. As the player is more and more

successful, increase the speed of the sequence as it is played back to the player. The time spent

playing each note in a sequence is currently 1s. Furthermore, the delay in between playing the

notes is currently 0.5s. Modify this as follows:

1. Once the sequence gets to five notes, the time spent playing each each note should be

decreased to 0.9s; the delay in between playing the notes should be decreased to 0.4s.

2. Once the sequence gets to seven notes, the time spent playing each each note should be

decreased to 0.8s; the delay in between playing the notes should be decreased to 0.3s.

Gourd 13 Last modified: 23 Feb 2018

���

3. Once the sequence gets to ten notes, the time spent playing each each note should be

decreased to 0.7s; the delay in between playing the notes should be decreased to 0.25s.

4. Once the sequence gets to thirteen notes, the time spent playing each each note should be

decreased to 0.6s; the delay in between playing the notes should be decreased to 0.15s.

Note that this should not affect the normal play and delay times when the player presses

the switches!

(3) Over time, no longer use the LEDs when playing the sequence. Once the sequence gets to

fifteen notes, stop turning LEDs on/off. That is, the player is evidently so good at this point that

the sequence should only be played audibly. The play and delay times should be as described in

(2) above (i.e., the same times as a sequence of thirteen notes).

Note that this should not affect the normal behavior of the LEDs when the player presses

the switches!

You are to submit your Python source code only (as a .py file) through the upload facility on the

web site.

Gourd 14 Last modified: 23 Feb 2018

���

