The Science of Computing I Living with Cyber
Raspberry Pi Activity 3: Catch the Baby!

In this activity, you will design a simple game. You will need the following items:
* Raspberry Pi B v2 with power adapter;
* LCD touchscreen with power adapter and HDMI cable;
* Wireless keyboard and mouse with USB dongle;
* USB-powered speakers (optional);
* Wi-Fi USB dongle; and
* MicroSD card with NOOBS pre-installed.

The goal of this activity is to take you through the process of making a simple game in Scratch. Various
constructs will be utilized and discussed (e.g., selection, repetition).

Catch the Baby!

The objective of the game Catch the Baby! is, well, to use a trampoline to catch a falling baby. Each
time the baby is successfully caught by the trampoline, the player's score increases. The baby is
randomly placed somewhere at the top of the screen, and then quickly descends to the bottom. The
player can control the trampoline with the left and right arrow keys to position it below the falling baby.
Technically, the baby can barely touch the trampoline to be saved. Here is a screenshot of the stage at

the start of play:

T*__-p

The game
Start a new Scratch project. Remove the default cat sprite by right-clicking on the cat and selecting
delete:

Gourd, Khan 1 Last modified: 16 Oct 2015

Mew sprite: ﬁﬁ:” 'r":’ :4'

| show
export this sprite

duplicate
delete

This is a good time to add the two sprites that you will need: the baby and the trampoline. To add the
baby, click on the choose new sprite from file icon, then browse through the People folder and select

the baby:

ool < B D File Edit Share Help

New Sprite

boyL-standing

boyL-walking

Rename the baby to something more appropriate, like Baby.

Gourd, Khan

Last modified: 16 Oct 2015

To add the trampoline, go through the same process, but browse through the Things folder and select the
light blue trampoline:

New Sprite

L=

Cormputer (mings I'Q ‘i} D ‘

sunglassFl

sunglassFz sunglassF3 sunglassFd —

B

tennisball Touch-me Tra... trampoline umbrella

ey

jgourd

J -
Desktop O
S

[

g

Costumes
: & J

wizardhat

0K Cancel
S S

Note that the trampoline has a script associated with it. That is, it comes with a preloaded program that
plays a short drum sound and changes the sprite if it is collide with. We will make use of some of this

later. For now, resize the baby and trampoline sprites so that they are smaller (as in the image at the
beginning of this activity).

Variables
We will need one variable in our game: score. Add it now through the variables blocks group:

Jusr/share/scratch/Scratch.image -+ ox

Variable name?
scorel

@ For all sprites O For this sprite orly

o (BT

Gourd, Khan 3 Last modified: 16 Oct 2015

This adds the variable and allows us to modify it as we wish:

Motion Control
Looks Sensing
Sound Dperators

Pen ¥ariables

tMake a wariable
Delete a wariable

[score

to E
change
show wariable score

hide wvariable score

Make a list

Make sure the baby sprite is selected in the sprites list and implement the following script for it:

when clicked
cet sCore to E
forever

go to x: | pick random Behly to i

(=

change y by
|

repeat until y position = @kl or touching Trampoline

Let's explain what's going on here. This script runs when the green flag is clicked (i.e., when the game
is started). The first statement sets the score to 0. Then, a group of statements is repeated forever (well,

at least until the stop sign is clicked by the user).

Gourd, Khan 4

Last modified: 16 Oct 2015

The grouped statements in the forever construct first instruct the baby to move to a random position at
the top of the screen (where y=120). By experimenting, it was calculated that the leftmost position for
the baby should be at x=-205 and the rightmost at x=205.

At this point, a repeat-until construct is entered. Note that this is, in effect, repetition within repetition!
The repeat-until condition instructs the baby to move down 10 pixels (change y by -10) until its is at
position y=-150 or until it is touching the trampoline. In effect, it is instructing the baby to move down
until it either collides with the trampoline or it reaches the bottom of the stage. Once either of these
conditions occurs, the repeat-until construct is exited.

The next statement is a selection statement in the form of an if-else construct. The script is now going to
potentially do two different things, depending on whether or not the baby has collided with the
trampoline. If it has (i.e., touching Trampoline), then it will say, “Yay!” for a bit, and the score will be
incremented (since the baby was successfully caught by the trampoline). Otherwise (else), it will cry.
Note the broadcast miss statement. This is a useful way to send another sprite a message. Any sprite
can broadcast a message that other sprites can receive. In this case, the goal is to notify the trampoline
that it has missed the baby. Adding a broadcast message is as simple as adding the block and creating a
new message using the block's arrow:

—]

Kessage name:

(1] 4 Cancel

Gourd, Khan 5 Last modified: 16 Oct 2015

That's it for the baby! Now click on the trampoline in the sprites list and change the existing script to
the following new script:

forever if . touching Baby |2

sat fisheye | effect to]

set fisheve |effect to o

This change instructs the trampoline to move to the bottom-left corner of the stage when the green flag
is clicked. It then repeats a set of statements forever, but only when it has collided with the baby (i.e., if
touching Baby). If so, it first, it alters the trampoline sprite a little bit applying a fisheye filter (which
makes the sprite appear to bend a little). A drum sound is then played, which is followed by a small
delay, an undo of the fisheye filter, and another small delay.

Add another script to the trampoline as follows:

when I receive miss

say for 0 SBCS

This script instructs the trampoline to say something appropriate when it receives the broadcasted
message miss. Recall that this message was defined in the baby's script earlier. So the baby can
broadcast the message which is then received by the trampoline. That is, if the baby reaches the bottom
of the stage (i.e., the trampoline missed the baby), it broadcasts this message that the trampoline
receives. This alerts the trampoline that it has missed the baby, and it utters an appropriate message.

The last thing to add is the ability to move the trampoline with the left and right arrow keys. We can do
this by adding the following two scripts:

~ -~

when left arrow | key pressed when right arrow | key pressed

" x position =

move EEll steps
| —

¥ x position < [N

mowve steps
| —

Gourd, Khan 6 Last modified: 16 Oct 2015

These scripts instruct the trampoline to move 10 steps (to the left or right) when the arrow keys are
pressed. In order to prevent the trampoline from going beyond the left or right border of the stage,
however, additional if statements are added. These selection constructs prevent the trampoline from
moving any further toward a border if it is already at one. For example, take a look at the left-arrow
script. The left-most position for the trampoline is at x=-180. This was determined by testing (i.e.,
moving the trampoline with the mouse and capturing the x coordinate). The script checks to see if the
trampoline's x-position is to the right of the established left-most position x=-180 (i.e., its x-position >
-180). If so, it allows the sprite to move to the left; otherwise, it simply ignores the keypress.

At this point, you should be able to play the game by clicking on the green flag icon.

Yay!

i

Waaaaaaa!
Oh noes!

Click on the red stop sign icon to end the game.

Improvements
Although the game ends here, improvements can be made. For example, the baby could bounce in a
random direction once it collides with the trampoline. Maybe it can defy the laws of gravity and move
from side-to-side as it falls down. Experiment a bit.

Gourd, Khan

Last modified: 16 Oct 2015

Gourd, Khan 8 Last modified: 16 Oct 2015

Gourd, Khan 9 Last modified: 16 Oct 2015

Gourd, Khan 10 Last modified: 16 Oct 2015

