
The Science of Computing I Living with Cyber

Raspberry Pi Activity 4: Arraynging Things

In this activity, you will implement the insertion sort. You will need the following items:
• Raspberry Pi B v2 with power adapter;
• LCD touchscreen with power adapter and HDMI cable;
• Wireless keyboard and mouse with USB dongle;
• USB-powered speakers (optional);
• Wi-Fi USB dongle; and
• MicroSD card with NOOBS pre-installed.

The goal of this activity is to implement the insertion sort in Scratch. Your script will sort a list of 20
values. You will be provided with scripts to (1) randomly populate a list with 20 unique values; and (2)
perform a binary search in the sorted list for some value.

You may refer to the lesson on data structures (Introduction to Data Structures) as necessary.

Randomly populating a list with unique values
First, declare a new list and call it array. Code and execute the following script to populate the list with
20 unique random values:

Performing the insertion sort
Implement the insertion sort algorithm in Scratch. This is the core of this activity, and ultimately what
you will submit for a grade. Although we discussed and performed the insertion sort in a previous
lesson, we never developed the pseudocode for it. Let's do that now. First, recall how we described the
insertion sort. It is the procedure that most people use to arrange a hand of cards. Think of the list as
having both a sorted portion and an unsorted portion. The first item of the list is considered to be a
sorted list one item long, with the rest of the list (items 2 through n) forming an unsorted portion.

The insertion sort removes the first item from the unsorted portion of the list and marks it as the item to
be inserted. It then works its way from the back to the front of the sorted portion of the list, at each step
comparing the item to be inserted with the current item. As long as the current item is larger than the

Gourd 1 Last modified: 29 Oct 2015

item to be inserted, the algorithm continues moving backward through the sorted portion of the list.
Eventually it will either reach the beginning of the sorted portion of the list or encounter an item that is
less than or equal to the item to be inserted. When that happens the algorithm inserts the item at the
current insertion point.

The entire process of selecting the first item from the unsorted portion of the list and scanning
backwards through the sorted portion of the list for the insertion point is then repeated. Eventually, the
unsorted portion of the list will be empty since all of the items will have been inserted into the sorted
portion of the list. When this occurs, the sort is complete.

Here's how to perform the insertion sort on the list [7 9 3 5 1]:

Pass 1

List First item Comparison Action

7 9 3 5 1 9 7 < 9

7 9 3 5 1 done with this pass insert 9

Pass 2

List First item Comparison Action

7 9 3 5 1 3 9 > 3 slide 9 over

7 3 9 5 1 3 7 > 3 slide 7 over

3 7 9 5 1 done with this pass insert 3

Pass 3

List First item Comparison Action

3 7 9 5 1 5 9 > 5 slide 9 over

3 7 5 9 1 5 7 > 5 slide 7 over

3 5 7 9 1 5 3 < 5

3 5 7 9 1 done with this pass insert 5

Pass 4

List First item Comparison Action

3 5 7 9 1 1 9 > 1 slide 9 over

3 5 7 1 9 1 7 > 1 slide 7 over

3 5 1 7 9 1 5 > 1 slide 5 over

3 1 5 7 9 1 3 > 1 slide 3 over

1 3 5 7 9 done with the sort insert 1

Gourd 2 Last modified: 29 Oct 2015

That was the long way. Here's the short way, where each pass is summarized in a single row of the table
and the unsorted portion of the list is underlined at each pass:

Pass List

original list 7 9 3 5 1

1 7 9 3 5 1

2 3 7 9 5 1

3 3 5 7 9 1

4 1 3 5 7 9

The following is the pseudocode for the insertion sort:
 1: n ← length of the list
 2: i ← 2
 3: repeat
 4: if item i of list < item i-1 of list
 5: then
 6: temp ← item i of list
 7: j ← i – 1
 8: repeat
 9: if item j of list > temp
10: then
11: replace item j+1 of list with item j of list
12: end
13: j ← j – 1
14: until j = 0 or item j of list not > temp
15: replace item j+1 of list with temp
16: end
17: i ← i + 1
18: until i > n

Let's explain the algorithm a bit. Line 1 sets the length of the list in variable n. Throughout the
algorithm, as the list changes in size (i.e., as it becomes smaller when values are removed), the variable
n will be updated to reflect the current length of the list.

Line 2 sets the current item in the list to be inserted (the second value in the list). Recall that, initially,
the insertion sort assumes the first item in the list to be the sole item in the unsorted portion of the list.
Trivially, a single item is sorted! So the insertion sort begins with the second item.

Line 3 defines repetition that controls each pass through the list. At each pass, the first value in the
unsorted portion of the list will be inserted into its proper position in the sorted portion of the list. The
loop iterates from the second value through the last value in the list, using the variable i.

Line 4 checks to see if the current value to be inserted into the sorted portion of the list happens to be
smaller than the last value currently in the sorted portion of the list. If this is false, then it is already in

Gourd 3 Last modified: 29 Oct 2015

its proper position (i.e., it is the largest value so far and belongs at the end of the sorted portion of the
list).

Line 6 stores the value to be inserted in the variable temp.

Lines 7 through 14 compare the value to be inserted with the values in the sorted portion of the list (from
right-to-left) using the variable j. Any value that is found to be larger than the value to be inserted (in
the variable temp) is moved to the right one index. This occurs either until the beginning of the sorted
portion of the list has been reached (i.e., j=0) or a value in the sorted portion of the list is less than the
value to be inserted (i.e., j is the index before the proper position for the value to be inserted).

Line 15 is the last statement executed at each pass through the list. It inserts the value to be inserted
(stored in the variable temp) into its proper place in the sorted portion of the list.

Homework: Insertion Sort

Your task, should you choose to accept it, is to implement the above pseudocode in Scratch as a script.
Of course, you can test your script on the randomly populated list of 20 values to see if it works (i.e., it
properly sorts the list).

The only requirement in terms of scripts in your submission is the insertion sort. However, if you
include any other provided scripts, that's fine.

You are to submit your Scratch v1.4 (not v2.0!) file (with a .sb extension) through the upload
facility on the web site.

Searching through the list with the binary search
When your insertion works properly (and you have a sorted list), you can implement the binary search
algorithm as follows:

Gourd 4 Last modified: 29 Oct 2015

Of course, you will have to declare the proper variables (i.e., mid and num) and set an initial value for
num (choose several, some of which are in the list and one of which is not).

An experiment!
Try changing the list so that it contains text data as opposed to numeric data. For example, try filling the
list with values like: thirty-seven, forty-five, eighty-nine, seven, eight, twenty-four, and so on. Or fill the
list with random strings of characters. Here's an example:

Gourd 5 Last modified: 29 Oct 2015

Does your insertion sort algorithm still work (i.e., does it properly sort the list of text values in
alphabetical order)? Does the binary search algorithm still work? Try it with a value that's in the list
and one that's not. You may also want to code a script that creates a list of random text values. How
would such a script work? Here's one way of generating random strings of characters of random
lengths. First, we create a text variable (called characters) that contains all the valid characters that we
want to include in our strings. We use this text variable to generate a list of its unique characters:

The script iterates through each letter of the variable characters and adds each one to the list alphabet.
From there, we populate a list with random strings of random lengths:

Gourd 6 Last modified: 29 Oct 2015

Again, we limit the number of items in the list to 10. Initially, we clear the variable temp (it will
eventually store one of the strings that we want to add in the list). We pick a random length (from 5 to
20) for each string. The string is then iteratively built, one letter at a time, from random letters in the
alphabet. So long as the list does not contain the randomly generated string, it is added! And that's it!

Use these scripts to test if your insertion sort script and the provided binary search script works on text
data.

Gourd 7 Last modified: 29 Oct 2015

