
The Science of Computing II Living with Cyber

Lesson 2: Computer Programming in Python Pillar: Computer Programming

So far, we have been using Scratch as the programming language we use to create and implement
algorithms programmatically. While Scratch is easy to code in and allows us to come up with some
pretty cool programs without requiring too much background in programming, the time has come for us
to transition to a more general purpose programming language.

General purpose programming languages are more robust, and can (and are) used in more situations than
educational programming languages like Scratch. Think of it like this: using a programming language
like Scratch is like building a Lego house only using 2x4 Lego pieces. While it is possible to do so,
there is a limitation on what kinds of houses you can build. Conversely, using more general purpose
programming languages is like building a house with any kind of Lego piece you can think up in your
mind. There are fewer limitations, and the kinds of houses you can build are limitless. In this course,
we will use Python as the general purpose programming language.

Why Python?
You may have heard about other general purpose programming languages: Java, C, C++, C#, Visual
Basic, and so on. So why use Python instead of, say, Java? In the end, it amounts to the simple idea
that, unlike all of the other general purpose programming languages listed above, Python allows us to
create powerful programs with limited knowledge about syntax, therefore allowing us to focus on
problem solving instead. In a sense, Python is logical. That is, nothing must be initially taken on faith
(that will ostensibly be explained at a later time). There isn't any excess baggage that's required in order
to begin to write even simple Python programs.

Recall how, in geometry, the formula for calculating the volume of a cone was given. At that time, it
was simply inexplicable. That is, you were most likely told to memorize it. It is not until a calculus
course that this formula is actually derived, and how it came to be is fully explained. Why? Well, it is
simply because it requires calculus in order to do so. Most students taking a geometry course have not
yet had calculus; however, formulas for calculating the volume of various objects (including a cone) are
typical in such a course. The problem, of course, is that we are told to take it on faith that it, in fact,
works as described. We are told that, how it works and how it was derived, will be explained at a later
time. The problem with this is that it forces memorization of important material as opposed to a deep
understanding of it (which, in the end, is the goal).

A similar thing actually occurs in a lot of programming languages. Often, we must memorize syntax
that will be explained later. Python is unique in that it does a pretty good job of taking all of that out by
just being simple. Programming in Python is immediately logical and explicable.

Take the following simple example of a program that displays the text, “Programming rules, man!” in
various general purpose programming languages:

Gourd, Kiremire, O'Neal 1 Last modified: 01 Mar 2016

In Java:
public class SimpleProgram
{

public static void main(String[] args)
{

System.out.println("Programming rules, man!");
}

}

In C:
#include <stdio.h>

int main()
{

printf("Programming rules, man!\n");
}

In C++:
#include <iostream>
using namespace std;

int main()
{

cout << "Programming rules, man!" << endl;
}

In C#:
public class SimpleProgram
{

public static void Main()
{

System.Console.WriteLine("Programming rules, man!");
}

}

In Visual Basic:
Module Hello

Sub Main()
MsgBox("Programming rules, man!")

End Sub
End Module

And in Python:
print "Programming rules, man!"

In all of these examples, compiling and running the programs (or interpreting them) produces a single
line of output text: “Programming rules, man!” Did you notice that, in all of the examples (except for
Python), there seems to be a good bit of seemingly extra stuff for such a simple program? There are a

Gourd, Kiremire, O'Neal 2 Last modified: 01 Mar 2016

lot of words that you may not be familiar with or immediately understand: class, public, static,
void, main/Main, #include, printf, cout, namespace, String[], endl, Module, Sub,
MsgBox, and so on. In fact, the only readable version to a beginner is usually the one written in Python.
It is pretty evident that the statement print “Programming rules, man!” means to display
that string of characters to the screen (or console).

Python is extremely readable because it has very simple and consistent syntax. This makes it perfect for
beginner programmers. It also forces good coding practices and style, something that is very important
for beginners (especially when it comes to debugging and/or maintaining programs). Python has a large
set of libraries that provide powerful functionality to do just about anything. Libraries allow Python
programmers to use all kinds of things that others have created (i.e., we don't have to reinvent the
wheel). A huge benefit of Python is that it is platform independent. It doesn't matter what operating
system you use, it is supported with minimal setup and configuration, and there is no need to deal with
dependencies (i.e., other things that are required in order to just begin to code in Python).

Don't think that, because of its simplicity, Python is therefore not a powerful language (or perhaps that it
doesn't compete with Java or C++). Python is indeed powerful, and can do everything that other
programming languages can do (e.g., it does support the object-oriented paradigm).

Did you know?

The name of the Python programming language is taken from a television series called Monty Python's
Flying Circus (and not from the snake).

Integrated development environment
Many programmers write their programs using some sort of text editor (usually a simplistic one, albeit
with useful characteristics such as syntax highlighting). In fact, some write programs at the command
line (in the terminal) using nothing but a text-based text editor (i.e., without graphical characteristics).
Most programmers, however, use an IDE (Integrated Development Environment).

Definition: An Integrated Development Environment (IDE) is a piece of software that allows computer
programmers to design, execute, and debug computer programs in an integrated and flexible manner.

On the Raspberry Pi, the IDE used to design Python programs is called IDLE (which stands for Python's
Integrated DeveLopment Environment). Other IDEs exist for pretty much all of the most used general
purpose programming languages: Eclipse, Visual Studio, Code::Blocks, NetBeans, Dev-C++, Xcode,
and so on. In fact, many of these IDEs support more than one language (some natively, others by
installing additional plug-ins or modules)! Here's an image of IDLE with the program shown earlier
implemented (and executed):

Gourd, Kiremire, O'Neal 3 Last modified: 01 Mar 2016

On the Raspberry Pi, IDLE can be launched as follows:

Gourd, Kiremire, O'Neal 4 Last modified: 01 Mar 2016

Python programs can also be created and executed at the command line (or terminal). We do so by
launching a terminal and typing python, which brings up the Python shell:

Scratch vs Python
In a previous lesson, you learned that programs written in a programming language are either compiled
(to machine language so that a computer can execute them directly) or interpreted, statement-by-
statement (in a sense, you could say that programs written in interpreted languages are compiled, line-
by-line, in real time). Python is an interpreted language that implements the imperative paradigm. That
is, programs are designed as a sequence of instructions (called statements) that can be followed to
complete a task.

Let's take a look at a simple program in Scratch and see how it compares to the same thing in Python:

What does this program do? Simply put, it displays the numbers 2, 4, 6, and 8. Take a look at the script
above. The variable n is initially set to 1. A repeat-until loop is executed so long as n is less than 10
(i.e., 1 through 9). Each time the body of the loop is executed, the string “n is now (plus the value of n)”
is displayed if n is evenly divisible by 2. For example, if n is 4, then the string n is now 4 is displayed.

Gourd, Kiremire, O'Neal 5 Last modified: 01 Mar 2016

Recall that the mod operator returns the remainder of a division. Therefore, when n mod 2 = 0 is true, it
means that the remainder of n divided by 2 is zero – so n must be even! At the end of the body of the
loop, the variable n is incremented (ensuring that n will eventually reach the value 10, and we will break
out of the repeat-until loop).

Here's how this can be similarly done in Python:
n = 1
while n < 10:

if n % 2 == 0:
print "n is now " + str(n)

n = n + 1

At this point, it is fine if you don't understand everything that's going on syntactically. The idea is
simply to illustrate how Scratch and Python differ (and are similar!). But let's try to explain. The block,
set n to 1, in Scratch is implemented in Python as, n = 1. Pretty similar! Python has no repeat-until
repetition construct. Instead, we can use a while construct with a modified condition. Repeating a task
until a variable (in this case, n) is 10 is the same thing as repeating it while the variable is less than 10.
If-statements are similar; however, the mod and equality operators differ. In Python, we check for
equality using the double-equal (==) operator. The mod operator is a percent sign (%). So the block, if
n mod 2 = 0, in Scratch can be implemented in Python as, if n % 2 == 0. Generating the output,
“n is now 4,” for example, can be implemented in Scratch using the familiar print statement: print
"n is now 4". Of course, we don't always want to display that n is 4. So we concatenate (or join)
the value of n to the string “n is now ” just as we did in Scratch. However, since n is not a string of
characters (i.e., it is a number – an integer to be precise), then it must first be converted to a string before
being concatenated to another string. This is what str(n) does. Finally, the value of n is incremented
by 1 with the statement n = n + 1.

In Scratch, it is easy to see the blocks that belong in the body of a repetition construct. The puzzle
pieces intrinsically capture this (i.e., they are quite literally visible inside the repeat-until block in the
script above). In Python, we denote statement hierarchy (i.e., if statements belong in the body of a
construct such as a while loop) by using indentation. Note how it is quite clear which statements belong
in the body of the while loop above: the if-statement and the statement that increments the variable n by
1. Note that the print statement is inside the true part of the if-statement (this is evident by how it is
directly beneath the if-statement and indented further to the right). Again, at this point it is fine to have a
minimal grasp of Python's syntax.

Activity 1: Python Primer

In this activity, you (or the prof) will experiment with the Python IDE in order to get a basic
understanding of and experience with Python.

First, bring up the Python IDE (IDLE). Formally, we call this the Python shell, an active Python
interpreter environment. It's quite useful as it can be used to evaluate expressions in real time (i.e.,
without saving a program to a file first).

Gourd, Kiremire, O'Neal 6 Last modified: 01 Mar 2016

Simple arithmetic expressions
Let's first begin with some simple arithmetic expressions to see how the Python shell can evaluate them
and provide real time results. Here's an example of Python evaluating a simple expression (12 + 65)
and providing the result in IDLE:

Note that the size of the IDLE window has been reduced in this document.

Python evaluates the expression, 12 + 65, and provides the result in the Python shell. Here are more
examples:

Verify that the expressions are indeed correct (e.g., 5 – 15 = -10, 2.0 * 4.5 = 9.0, etc).

Gourd, Kiremire, O'Neal 7 Last modified: 01 Mar 2016

So far, you have seen the four main arithmetic operators (i.e., +, -, *, and /). Take a look at this
expression:

What does the ** operator do? It performs exponential (power) calculation on the two operands. The
expression 2 ** 10 implies two raised to the tenth power (or 210), which is indeed 1024.

Now, take a look at the following expressions:

Note how the expression 10 / 3 results in 3. The decimal portion of the result (which we calculate to
precisely be 3.33333...) seems to be truncated. In fact, the / operator in Python returns integer division
if the two operands the operator is being applied to are both integers. That is, it returns the integer
portion only (i.e., the quotient) of a division of two integers. To perform floating point division, at least
one of the operands must then be floating point. This is shown in the second example above.

Gourd, Kiremire, O'Neal 8 Last modified: 01 Mar 2016

We can force integer division regardless of the type of operands with the // operator as follows:

There is one more arithmetic operator in Python: the % operator. This operator returns the remainder of
a division. Take a look at the following example:

The expression 56 / 10 is indeed 5 (the / operator produces an integer since both of the operands, 56 and
10, are integers). The remainder that results from the expression 56 / 10 is 6 (since 56 / 10 = 5
remainder of 6). Therefore, 56 % 10 = 6.

Gourd, Kiremire, O'Neal 9 Last modified: 01 Mar 2016

Output
As seen earlier, Python allows output via a print statement. Here are some simple examples:

The statement print 5 + 10 instructs Python to display the result of the expression 5 + 10 (which
is 15). The statement print "Programming rules, man!" does just what it did when shown
earlier. Take a look at the last statement: print "5+10". It looks suspiciously like the first
statement, except that the expression 5 + 10 is enclosed ins quotes. This lets the Python interpreter
know that the characters “5 + 10” are to be interpreted as a string (characters strung together) as
opposed to an arithmetic expression consisting of the + operator and the two operands, 5 and 10. This
is why the output of this statement is, quite literally, 5 + 10.

Suppose that you would like to print the following string of characters: 5 plus 10 equals 15 (and that
you would like for 15 to be calculated as the result of the expression 5 + 10). This can be accomplished
as follows:

First, note the error produced by the following statement: print "5 plus 10 equals " + (5
+ 10). The error occurs because Python does not know how to “add” or concatenate the string “5 plus

Gourd, Kiremire, O'Neal 10 Last modified: 01 Mar 2016

10 equals ” to the integer that results from the expression (5 + 10). To instruct the Python interpreter to
concatenate the result of this expression (as characters) to the first part of the string, the result (15) must
be converted to a string. In Python, this is accomplished with the str() function. Python converts
anything within the parentheses (we call this the parameters of the function) to a string of characters.
Therefore, the expression str(5 + 10) instructs the Python interpreter to first add 5 and 10 (to produce
the result 15), and then convert 15 to the string “15”. It is then valid to concatenate the string “5 plus 10
equals ” to the string “15”.

You may also have noticed that, for most of the examples, operands and operators were separated by a
space. For example, the expression 5+10 was written in the Python shell as 5 + 10 (with spaces). This
is an example of good coding style that increases the readability of our programs.

Input
Python also supports statements that allow users to input information via the input() function. This
information is typically stored in variables. Take a look at the following example:

The statement, name = input("What is your name? "), prompts the user for a name. It
stores the result in the variable name. Note that it expects any type. We could have very well entered in
23 as the response, and the variable name would have stored the integer 23. But, of course, we wanted
to enter an actual name. Since a name is a string of characters, then we must make sure to enclose the
response with quotes. What happens if we forget to do so? Well, we get the error shown above. In the
end, we can display the contents of the variable name simply by typing its name (i.e., name) in the
Python shell. this is also shown above.

Gourd, Kiremire, O'Neal 11 Last modified: 01 Mar 2016

We can now use the variable name as follows:

That's another example of string concatenation. The print statement has another format:

Gourd, Kiremire, O'Neal 12 Last modified: 01 Mar 2016

Note how we can separate the components of what we want output with commas. But note the
difference! Apparently, Python inserts a space in between each component when the print statement is
formatted in this manner. If this is not desired, we can modify the statement as follows:

The braces ({})within a string are known as format fields. They are intended to note that something
belongs there (that will be specified at a later time). To specify the contents to replace the braces with,
we execute the format method on the string with the format field. We provide the values (which, in the
example above, is just the contents of the variable name) that will be formatted to a string and replace
the format fields. In the example above, the contents of the variable name is converted to a string (if
necessary) and inserted in the string over the braces. this results in the output, “Hi Brad!”

Gourd, Kiremire, O'Neal 13 Last modified: 01 Mar 2016

Here's another example of this with the following statement:
print "5 plus 10 equals {}".format(5 + 10):

Gourd, Kiremire, O'Neal 14 Last modified: 01 Mar 2016

Here are more examples of this with arithmetic expressions:

Gourd, Kiremire, O'Neal 15 Last modified: 01 Mar 2016

Try to do the same thing as in the example above, except set a=2.0 and b=10.0. Notice any differences?

Other than the variables and the results being expressed as decimals (i.e., floating point numbers), the
statement, print "{} / {} = {}".format(a, b, a / b), results in the exact result, 0.2,
since at least one of the operands is a floating point value.

Creating programs and saving files
So far, we have been entering statements in the Python shell. These statements have been interpreted,
one at a time. If we were to close the Python shell, everything that we entered would be lost. In order
to save Python programs, we must type them in a separate editor outside of the Python shell, save them
in a file. Once this has been done, we can then execute them in the Python shell.

To create a new Python program, click on File | New File (or press Ctrl+N) in the Python shell. This
brings up a new window (an editor that is a part of IDLE) in which we can type our program. Type the
following program into this new window:

a = input("Enter a number: ")
b = input("Enter another number: ")
print "{} raised to the power {} is {}".format(a, b, a ** b)

Gourd, Kiremire, O'Neal 16 Last modified: 01 Mar 2016

This is what you should see at this point:

Before we can run this program, it must be saved. Do so by clicking on File | Save (or press Ctrl+S).
Give it an appropriate name, and save it to an appropriate location. Now it can be executed by clicking
on Run | Run Module (or by pressing F5). This executes the program in the Python shell:

Provide values for the two requested numbers (3 and 5 were provided in the example above).

Lastly, to exit IDLE, click on File | Exit (or press Ctrl+Q).

Reloading a saved file
To load a saved Python program, simply double-click on the saved file. This should bring up the IDLE
editor with your file loaded in it. Sometimes, double-clicking on the file just opens it up in a notepad-
like editor by default. To force it to open in IDLE, right-click the file instead, and select Open with
IDLE. This should load it in the IDLE editor. The program can then be executed as before, by clicking
on Run | Run Module (or by pressing F5). This will automatically open a Python shell and execute the
program.

Your turn
Write a Python program that prompts the user for two numbers (let's use 14 and 3 for this example) and
subsequently displays the following string:

The quotient of 14 divided by 3 is 4 with a remainder of 2.

Gourd, Kiremire, O'Neal 17 Last modified: 01 Mar 2016

Since you are familiar with writing programs in Scratch, let's use that familiarity to compare the various
programming constructs and see how they differ syntactically in Python.

Data types, constants, and variables
As mentioned in a previous lesson, the kinds of values that can be expressed in a programming language
are known as its data types. Recall that Scratch supports only two data types: text and numbers. Since
Python is a general purpose programming language, it supports many more data types. Actually, it can
support virtually any type that you can think of! That is, Python allows you to define your own type for
use in whatever way you wish. Since this is user-defined, let's focus on what are called primitive types
for now. The primitive types of a programming language are those data types that are built-in (or
standard) to the language and typically considered as basic building blocks (i.e., more complex types can
be created from these primitive types).

Python's standard types can be grouped into several classes: numeric types, sequences, sets, and
mappings. Although there are actually others, we will focus on these for now.

Numeric types include whole numbers, floating point numbers, and complex numbers. Python has two
whole number types: int and float. The int data type is a 64-bit integer (in Python 2.x) or an
integer of unlimited length (in Python 3.x). Actually, an integer of unlimited length also exists (only) in
Python 2.x as the long data type. These integer types can represent negative or positive whole
numbers. The float type is a 64-bit floating point (decimal) number. Lastly, the complex type
represents complex numbers (i.e., numbers with real and imaginary parts). Most of our programs will
require only int and float.

So what does this all mean? We create variables that contain data of some data type. Knowing the data
type of a variable is like knowing the superpowers of a person you can control. In this analogy, the
superpowers of a data type are the methods and properties that can be leveraged for use in whatever
program you are writing at the time. For example, one of the superpowers of the numeric data types is
raising them to a power. To do that, we can use the function of the form pow(x,y). In this example,
x and y are variables that are of type int or float. The pow function returns the value of the
computation involving raising the value in x to the power of the value in y (i.e., xy). This function would
not typically be able to work for variables that aren't numeric data types. You may recall that the same
functionality can be implemented in Python as: x ** y. This effectively performs the same thing.

A constant is defined as a value of a particular type that does not change over time. In Python (just as
in Scratch), both numbers and text may be expressed as constants. Numeric constants are composed of
the digits 0 through 9 and, optionally, a negative sign (for negative numbers), and a decimal point (for
floating point numbers). For example, the number -3.14159 is a numeric constant in Python.

Just as in Scratch, a text constant consists of a sequence of characters (also known as a string of
characters – or just a string). The following are examples of valid string constants:

“A man, a plan, a canal, Panama.”
“Was it Eliot's toilet I saw?”
“There are 10 kinds of people in this world. Those who know binary, those who don't, and those

who didn't know it was in base 3!”

Note that, unlike Scratch, Python requires the quotes surrounding text constants.

Gourd, Kiremire, O'Neal 18 Last modified: 01 Mar 2016

Recall that a variable is defined to be a named object that can store a value of a particular type. Before
a variable can be used, its name must be declared. Here is an example of declaring and initializing a
variable in Python:

age = 19

In Scratch, the variable had to first be declared in the variables blocks group. A set var to n block was
then used to initialize the variable:

Here are some examples that deal with variables and how they compare in Scratch and Python:

Gourd, Kiremire, O'Neal 19 Last modified: 01 Mar 2016

Another example:

Gourd, Kiremire, O'Neal 20 Last modified: 01 Mar 2016

In short, to declare variables in Python, we simply write a statement that assigns a value to a variable.
Note that, just as in Scratch, we can assign a value of a different type to a variable. For example:

Gourd, Kiremire, O'Neal 21 Last modified: 01 Mar 2016

Input and output
As illustrated earlier, input and output statements in Python are relatively straightforward (and pretty
much reflect their implementations in Scratch). The output statement in Scratch is implemented through
a say block. As you know, the output is then reflected on the stage (usually through a text bubble above
a sprite). In Python, output is implemented as a print statement: print "This is some
output!"

In Scratch, input is obtained through the ask ... and wait block. Subsequently, the answer to the
question asked can be assigned to a variable using the set n to answer block:

In Python, we use the input statement to ask a question and obtain user input. In the same statement, we
can assign the result of this to a variable:

Of course, we need to take care to properly specify whether the input is numeric or text (i.e., with
quotes).

Expressions and assignment
You've seen how to assign values to variables above using a simple assignment statement. For example:

name = "Shonda Lear"
age = 19
grade = 91.76
letter_grade = "A"

These are all examples of assignment statements. In this configuration, the equal sign (=) functions as
the assignment operator. Later, you will see how it can also be used to compare values or expressions.

An expression in a programming language is some combination of values (e.g., constants and variables)
that are evaluated to produce some new value. For example, a simple expression in Python is 1 + 2.
The result of this expression is, of course, 3! Expressions usually take on the form of operand operator
operand. In the previous example, the operator was + and the operands were 1 and 2. The operator +

Gourd, Kiremire, O'Neal 22 Last modified: 01 Mar 2016

has a very well defined behavior on operands of numeric types: it simply adds them. On string types, it
concatenates.

Like Scratch, Python has a variety of operators, broken down into several classes: arithmetic operators,
relational (comparison) operators, assignment operators, logical operators, bitwise operators,
membership operators, and identity operators. Let's first take a look at the arithmetic operators since
they relate directly to assignment. The arithmetic operators allow us to perform arithmetic operations
on two operands. In the following table, assume that a = 23, b = 17, c = 4.0, and d = 8.0:

Python Arithmetic Operators and Examples

+ addition a + b = 40 c + d = 12.0

– subtraction a – b = 6 c – d = -4.0

* multiplication a * b = 391 c * d = 32.0

/ division a / b = 1 c / d = 0.5

% modulus a % b = 6 c % d = 4.0

** exponentiation a ** b = 141050039560662968926103L c ** d = 65536.0

// floor division a // b = 1 c // d = 0.0

Note the L at the end of the result of the expression a ** b. In Python 2.x, 64-bit integers are of type
int, and unlimited length integers are of type long. An L at the end of a number implies that it is of
the long type. Here is output of the examples in the previous table using the variables c and d in IDLE:

Gourd, Kiremire, O'Neal 23 Last modified: 01 Mar 2016

The relational operators allow us to compare the values of two operands. The result is the relation
among the operands. In the following table, assume that a = 23 and b = 17:

Python Relational Operators and Examples

== equality a == b is False

!= inequality a != b is True

<> inequality a <> b is True

> greater than a > b is True

< less than a < b is False

>= greater than or equal to a >= b is True

<= less than or equal to a <= b is False

Note that the capitalization of True and False is intentional. In Python, the boolean value true is
expressed as True and false as False. Here is output of the examples in the previous table in IDLE:

In Python, relational operators are typically used in if-statements, where branching is often desired. This
will be illustrated in more detail later.

Gourd, Kiremire, O'Neal 24 Last modified: 01 Mar 2016

The assignment operators allow us to assign values to variables. You have already seen the most basic
example of this using the equal assignment operator (as in the statement: age = 19). In the following
table, assume that a = 23.0 and b = 17:

Python Assignment Operators and Examples

= a = b assigns b to a a = 17

+= a += b increments a by b (same as a = a + b) a = 40.0

–= a –= b decrements a by b (same as a = a – b) a = 6.0

*= a *= b multiplies a by b and stores the result in a (same as a =
a * b)

a = 391.0

/= a /= b divides a by b and stores the result in a (same as a = a /
b)

a = 1.3529411764705883

%= a %= b divides a by b and stores the remainder in a (same as
a = a % b)

a = 6.0

**= a **= b raises a to the power b and stores the result in a
(same as a = a ** b)

a = 1.4105003956066297e+23

//= a //= b divides a by b and stores the floor of the result to a
(same as a = a // b)

a = 1.0

Here is output of the examples in the previous table in IDLE:

Gourd, Kiremire, O'Neal 25 Last modified: 01 Mar 2016

The bitwise operators work on bits and perform bit-by-bit operations. Think back to binary addition or
to the primitive logic gates. Each of these concepts operated on bits and produced bits. In the following
table, assume that a = 60 (or 00111100 in binary) and b = 13 (or 00001101 in binary):

Python Bitwise Operators and Examples

& bitwise and a & b = 00001100 (or 12 in decimal)

| bitwise or a | b = 00111101 (or 61 in decimal)

^ bitwise xor a ^ b = 00110001 (or 49 in decimal)

~ bitwise not ~a = 11000011 (or -61 in decimal; we will explain this one later)

<< left shift a << 2 = 11110000 (or 240 in decimal)

>> right shift a >> 2 = 1111 (or 15 in decimal)

Gourd, Kiremire, O'Neal 26 Last modified: 01 Mar 2016

The bitwise not has the effect of inverting the bits. Why 11000011 in binary is equal to -61 in decimal
will be explained in a later lesson. Here is output of the examples in the previous table in IDLE:

Gourd, Kiremire, O'Neal 27 Last modified: 01 Mar 2016

Note the use of the bin function. It returns the binary representation of a value. If a = 60, the statement
bin(a) returns 0b111100 (which is 60 in binary). The prefix 0b implies binary. In fact, you can assign
values to variables in binary form using this prefix:

This can be done in other bases as well. For example, in hexadecimal (with the prefix 0x) or in octal
(with the prefix 0o):

The logical operators evaluate two operands and return the logical result (i.e., True or False). Again,
think back to the primitive logic gates and how they were effectively mapped to conditions in if-
statements. Logical operators operate on conditions and provide the overall logical result. In the
following table, assume that a = True and b = False:

Python Logical Operators and Examples

and logical and a and b is False

or logical or a or b is True

not logical not not a is False; not b is True

Gourd, Kiremire, O'Neal 28 Last modified: 01 Mar 2016

Note that this is equivalent to the primitive logic gates, where 0 is substituted for False and 1 for True.
Here is the truth table for the and gate shown in this manner:

A B A and B

False False False

False True False

True False False

True True True

When a is True and b is False, the result of a and b is False. Here is output of the examples in the
previous table in IDLE:

Gourd, Kiremire, O'Neal 29 Last modified: 01 Mar 2016

The logical operators do work when the inputs (i.e., a and b in the previous examples) aren't necessarily
equal to True and False. That is, they also work when they are numeric values. Take, for example, the
following:

The results can be a bit confusing. This can be explained by the following table, where the variables a
and b have numeric values:

Python Logical Operators and Examples

and logical and returns a if a is false, b otherwise

or logical or returns b if a is false, a otherwise

not logical not returns True if a is True, False otherwise

Note that, in Python, 0 is False and 1 is True. However, in if-statements, any non-zero result evaluates
to True. Formally, in the context of Boolean expressions, the following values are interpreted as false:
False, None, numeric zero of all types, and empty strings and containers. All other values are
interpreted as true. Convince yourself that the effect is indeed the same when evaluating logical
conditions whether they are numeric or Boolean.

Did you know?

The and and or logical operators are short circuit operators. That is, to evaluate a True or False result,
the minimum number of inputs required to produce such an output is evaluated. For example, suppose
that a = False and b = True. The expression a and b is only True if both a and b are True. Since a is
False, then there is no need to evaluate (or test) the value of b. This would be useless and waste CPU

Gourd, Kiremire, O'Neal 30 Last modified: 01 Mar 2016

cycles. Similarly, if a = True and b = True, the evaluation of the expression a or b only requires
checking that a is True for the entire expression to evaluate to True (i.e., there is no need to evaluate/test
the value of b).

Primary control constructs
Recall the three primary control constructs: sequence, selection, and repetition. To show how they are
implemented in Python, we'll start with examples in Scratch and show their Python equivalents.

Sequence implies one statement after another. In Scratch, we simply attach the blocks in the order that
we wish them to be executed. In Python, the idea is the same. We simply place statements in the order
that we wish them to be executed. Since you have seen this already in some of the examples above,
we'll move on to selection.

Recall that selection constructs contain one or more blocks of statements and specify the conditions
under which the blocks should be executed. Here's an example in Scratch:

Gourd, Kiremire, O'Neal 31 Last modified: 01 Mar 2016

First, convince yourself that the script correctly assigns a letter grade based on a numeric grade. Now
here is an equivalent snippet of code in Python:

The structure of an if-statement in Python is:
if condition:

if_body (true part)

The structure of an if-else statement in Python is:
if condition:

if_body (true part)
else:

else_body (false part)

Note in the grade/letter_grade example above that there are a few nested if-else statements. Python
provides a more elegant way to do the same thing using the elif clause (which stands for else if):

if grade > 89.5:
letter_grade = "A"

elif grade > 79.5:
letter_grade = "B"

elif grade > 69.5:
letter_grade = "C"

elif grade > 59.5:
letter_grade = "D"

else:
letter_grade = "F"

Gourd, Kiremire, O'Neal 32 Last modified: 01 Mar 2016

This is indeed a bit more readable.

Note that the condition can be enclosed in parentheses (usually for readability); however, this is
optional:

if (condition):
if_body (true part)

For example:
if (age > 40):

print "You are old!"

Repetition
Python provides several constructs for repetition. The while loop is the most general one, and allows
for both event- and count-control. Comparing this to Scratch, the while loop is similar to the repeat-
until and repeat-n blocks. Here is a simple example in Scratch:

This simple script initializes a variable, sum, to 10. It then repeatedly decrements it by one until it is 0.
This can be accomplished in Python using a while loop. The structure of a while loop in Python is:

while condition:
loop_body

The condition may be enclosed in parentheses (as with the condition in an if-statement):
while (condition):

loop_body

Here is one way to accomplish the same task described in the Scratch script above in Python using a
while loop:

sum = 10
while sum > 0:

sum –= 1

Gourd, Kiremire, O'Neal 33 Last modified: 01 Mar 2016

Here's this program shown in IDLE:

To implement Scratch's repeat-n loop in Python with a while loop, we need to create a counter:

Python also has another repetition construct (a for loop) that will be covered at a later time.

Comments
It is often useful to provide informative text in our programs. This text is not interpreted or converted to
some sort of executable format as typical source code may be. It simply exists to provide information to
developers, coders, or users working on or inspecting source code. This kind of text is called a
comment. We often comment parts of programs to describe what something does, why a choice in
construct was chosen, and so on. Typically, a header at the top of our programs is also inserted to
provide information such as who authored the program, when it was last updated, and what it does.

In Python, there are two kinds of comments: single- and multi-line comments. Although there are
several ways of commenting, we will only discuss the more widely used methods.

Gourd, Kiremire, O'Neal 34 Last modified: 01 Mar 2016

Single-line comments span a single line (or a part of a line). A single line comments begins with the
pound or hash (for the Twitter crowd) sign: #. A single-line comments can take up the entire line (i.e.,
the line begins with #), or it can follow a valid Python statement (i.e., only the latter part of a line is
commented). Here are sample single-line comments:

get the user's name
name = input("What is your name? ")
name = "Dr. " + name # prepend the Dr. title

say hello!
print "Hello {}!".format(name)

In the snippet above, there are three single-line comments. Two each take up an entire line. The third
takes up only part of the line. The text that comes before it is valid Python syntax that is interpreted.
Note that, once a comment has been started on a line, the rest of the line must be a comment.

Multi-line comments begin and end with three single our double quotes in succession. They are
typically used in source code headers, to comment out blocks of code for reasons such as debugging,
and so on. Here are sample multi-line comments:

"""
Author: Manny McFarlane
Last updated: 2016-03-01
Description: This program is nothing but fluff.
"""

'''
And
here
is
another
multi-line
comment!
'''

""" This is also a valid
 multi-line comment """

''' And so is this! '''

Note that single and double quotes cannot be mixed in multi-line comments. That is, a multi-line
comment cannot start with three single quotes and end with three double quotes. Many Python
programmers prefer to implement multi-line comments as a sequence of single-line comments; for
example:

Author: Manny McFarlane
Last updated: 2016-03-01
Description: This program is nothing but fluff.

Gourd, Kiremire, O'Neal 35 Last modified: 01 Mar 2016

This often stems from the fact that, in Python, strings can be enclosed in single quotes ('), double quotes
("), or three successive single or double quotes. The latter allows strings to span multiple lines. For
example:

first_name = 'Joe'
last_name = "Smith"
bio = """I am a wonderful human being
capable of truly incredible things!"""

Here is the output of this code snippet:

Specifically regarding program headers, many programmers choose to implement them as follows to
make them readable and easily identifiable:

###
Author: Manny McFarlane
Last updated: 2016-03-01
Description: This program is nothing but fluff.
###

Identifiers and reserved words
An identifier is a name used to identify a variable, function, or other object (that will be discussed later).
Variable names (such as age and average, for example) or function names (such as midPoint and
distance, for example) are all valid identifiers.

In Python, identifiers must begin with a letter (either lowercase a to z or uppercase A to Z) or an
underscore (_) followed by zero or more letters, underscores, and digits (0 through 9). Here are
examples of valid identifiers:

average
Average
average_grade
averageScore

Gourd, Kiremire, O'Neal 36 Last modified: 01 Mar 2016

_mustard
7a69
a1b2c3X7Y9Z0

Note that Python is a case-sensitive language. For example, the identifier average is not the same as
the identifier Average. Take a look at this example:

Reserved words (sometimes called keywords) in a programming language are words that are
meaningful to the language and cannot be used as identifiers. Most programming languages have quite
a few reserved words. Python 2.7.6, for example, has the following reserved words:

and as assert break class

continue def del elif else

except exec finally for from

global if import in is

lambda not or pass print

raise return try while with

yield

You are already familiar with some of these: and, elif, else, if, not, or, print, and while.
Many of these reserved words will be discussed later.

Subprograms
A subprogram is a block or segment of organized, reusable, and related statements that perform some
action. Subprograms are useful because they allow programmers to define reusable code that can be
executed repeatedly in a single program. Recall that very few real programs are written as one long
piece of code. Instead, traditional imperative programs generally consist of large numbers of relatively
simple subprograms that work together to accomplish some complex task. While it is theoretically
possible to write large programs without the use of subprograms, as a practical matter any significant
program must be decomposed into manageable pieces if humans are to write and maintain it.

Gourd, Kiremire, O'Neal 37 Last modified: 01 Mar 2016

Recall that when a subprogram is invoked, or called, from within a program, the calling part of the
program pauses temporarily so that the called subprogram can carry out its actions. That is, flow of
control is temporarily transferred to the subprogram. Eventually, the called subprogram will complete
its task and control will once again return to the caller. When this occurs, the calling program resumes
its execution from the point it was at when the call took place.

Recall that subprograms can call other subprograms (including copies of themselves as we observed
with recursion). These subprograms can, in turn, call other subprograms. This chain of subprogram
invocations can extend to an arbitrary depth as long as the bottom of the chain is eventually reached. It
is necessary that infinite calling sequences be avoided, since each subprogram in the chain of
subprogram invocations must eventually complete its task and return control to the program that called
it.

Subprograms are broken down into two types: methods and functions. Generally, a method is a
subprogram that performs an action and returns flow of control to the point at which it was called. A
function is similar; however, it returns some sort of value before flow of control is transferred back to
the point at which it was called. For example, a method may simply display some useful information
about a program to the user (e.g., a program's help menu), while a function may compute some numeric
value and return it to the user. Subprograms in Python are generally just referred to as functions,
regardless of whether or not they return a value. For the remainder of this lesson, we will refer to
subprograms as functions.

In Python, functions must formally be declared prior to their use. That is, the body or content of a
function must be specified in a program before it can be called. The syntax for declaring a function is as
follows:

def function_name(optional_parameters):
function_body

The keyword def is a reserved word in Python and is used to declare functions. A function name can be
any valid identifier. The function name must be followed by a set of parentheses containing optional
parameters. Parameters allow for values (constants, variables, expressions, and so on) to be passed in
to a function. For example, a function may accept two values, calculate their average, and return the
result to the caller. The function definition is terminated with a colon (:). The body of a function (i.e.,
its enclosed statements) is indented.

Here is an example of a simple function that displays a line of text:
def sayHelloWorld():

print "Hello world!"

This function is called sayHelloWorld and takes no parameters. It simply displays the text, “Hello
world!”

To call this function, we simply need to specify its name and the values of its parameters (if any) as
follows:

sayHelloWorld()

Gourd, Kiremire, O'Neal 38 Last modified: 01 Mar 2016

Here is sample output of calling this simple function:

Formally, functions have a header and a body. The header is the statement that defines the function
(i.e., with the def keyword). The header of a function is often called its signature, and provides its
name and any parameters. Function parameters help a function complete its task by providing input
values. In fact, each call to a function possibly means a new set of parameters. Some functions compute
and return a result, called the return value, that is returned via the return keyword.

Here's a function that accepts two parameters and calculates (and returns) the average of the two:
def average(a, b):

return (a + b) / 2.0

And here's how it could be called:
average(5, 11)

The output of this (and another example) is shown below:

Gourd, Kiremire, O'Neal 39 Last modified: 01 Mar 2016

Note the return keyword. Its purpose is to return whatever expression comes after it. The statement
return (a + b) / 2.0 returns the result of the expression (a + b) / 2.0 to the caller
(which happened at the statement average(5, 11)).

Here's a pow function that returns the exponentiation of one parameter by another:
def pow(x, y):

return x ** y

And here's sample output of this function with various parameters:

Formal vs actual parameters
You have seen that a function can have parameters. These parameters are formally defined when the
function is defined; for example:

def average(a, b):
return (a + b) / 2.0

Here, the variables a and b are formally defined as parameters that must be passed in to the function
average when it is called. In this context, the variables a and b are called formal parameters. It is
where they are defined (in a formal manner).

Now consider a point in the source code where this function is called; for example:
avg = average(11, 67)

Here, the result of a call to the function average with the supplied values (or parameters) 11 and 67 is
stored in the variable avg. These values, 11 and 67, are considered actual parameters in this context.
That is, they are the actual values that will be passed in as parameters to the function average. In fact,
they are mapped to the formally defined parameters (i.e., formal parameters) a and b in the function
average. That function will use these values to make calculations and return the average of the two.
The value returned replaces the function call. Think of this replacement as follows:

avg = average(11, 67)
39.0

Gourd, Kiremire, O'Neal 40 Last modified: 01 Mar 2016

Therefore, the variable avg is assigned the value 39.0 after the call to the function average is
complete. Consider this call to the same function:

x = 11
y = 67
avg = average(x, y)

Here, the result is still the same. The average of the two variables, x and y (with the values 11 and 67
respectively), is stored in the variable avg. Here, x and y are also actual parameters (even if they are
variables themselves) because they represent the actual values supplied to the function average.

Variable scope
Consider the following Python program snippet:

The variables a and b are considered global variables. That is, they are accessible throughout the entire
program because they are defined outside of any block context (e.g., a loop construct, a function, etc).
Global variables can be accessed anywhere. Their scope is global (i.e., throughout the entire program).
Take a look at the output of the program above:

Gourd, Kiremire, O'Neal 41 Last modified: 01 Mar 2016

Initially, the variable a is assigned the value 10. The next segment of code defines the function f. This
is only a definition (i.e., the statements are not actually interpreted or executed at this point). Then, the
variable b is assigned the value 20. What follows is a call to the function f, passing the variable b as an
actual parameter. Control is then transferred to the function f, whose statements are now executed.
Note that, to the function f, the variable x is the formal parameter that takes on the value passed in (from
the variable b). So the variable x is now equal to the value of the variable b that was passed in at the
point of the call to f. Note that the variable x is local to the function f. That is, it is defined in f and
only accessible in f. Once f completes and control is transferred back to the point at which function f
was called, the variable x is no longer accessible! Therefore, x is considered a local variable. Its scope
is valid only in the function f. And this is why the output shown above produced an error.

Let's remove the error by commenting the offending statement and replacing it as follows:

Gourd, Kiremire, O'Neal 42 Last modified: 01 Mar 2016

Now take a look at the output:

In particular, let's start with the first two lines of output:
in f(): a=11, b=21, x=40
in main: a=10, b=20

When the function f is called, the value of b (20) is passed in (i.e., mapped) to the variable x. Since a
and b are global variables, they are also accessible in the function f. In f, all three variables are
changed (a is changed to 11, b is changed to 21, and x is doubled). We expect the values to be 11, 21,
and 40 (since x is originally 20 and is doubled). These results are clear.

What is not clear is the reason why, when control is transferred back to the point at which f was called,
the variables a and b revert to their original values (10 and 20 respectively). It turns out that a and b in
the function f only refer to the global variables in read-only statements (i.e., in any statement that does
not change their values). For example, in the statement: print a. Once an assignment statement is
executed (as in the statement: a = 11), Python considers the variable to be a new local variable. So
this local variable a is only accessible in the function f. The global variable a is not changed. Now you
see that we can define many variables of the same name, so long as their scope is mutually exclusive
(that is, there are no scope overlaps).

Python does provide a way, however, to change the value of global variables within a function. By
using the keyword global, it knows to consider the variable that follows it as a reference to one defined
globally. This is shown in the program snippet above (in the function g). Here, the variable a is
specified as global (and thus makes a reference to the global variable defined at the top of the program).
When g changes a to 1.5 times its value, the change is persistent in that it makes a change to the global
variable. When control is transferred back to the point at which g was called, the variable a remains
changed!

in g(): a=15.0, b=20
in main: a=15.0, b=20

Gourd, Kiremire, O'Neal 43 Last modified: 01 Mar 2016

Program flow
It is very important to be able to identify the flow of control in any program, particularly to understand
what is going on. In Python, function definitions aren't executed in the order that they are written in the
source code. Functions are only executed when they are called. This is perhaps best illustrated with an
example:

 1: def min(a, b):
 2: if (a < b):
 3: return a
 4: else:
 5: return b

 6: def max(a, b):
 7: if (a > b):
 8: return a
 9: else:
10: return b

11: num1 = input("Enter a number: ")
12: num2 = input("Enter another number: ")
13: print "The smaller is {}.".format(min(num1, num2))
14: print "The larger is {}.".format(max(num1, num2))

Each Python statement is numbered for reference. Lines 1 through 5 represent the definition of the
function min. This function returns the minimum of two values provided as parameters. Lines 6
through 10 represent the definition of the function max. This function returns the maximum of two
values provided as parameters. Lines 11 through 14 represent the main part of he program. Although
the Python interpreter does see lines 1 through 10, those lines are not actually executed until the
functions min and max are actually called. The first line of the program to actually be executed is line
11. In fact, here is the order of the statements executed in this program if num1 = 34 and num2 = 55:

11, 12, 13, 1, 2, 3, 14, 6, 7, 9, 10

Let's explain. Line 11 asks the user to provide some value for the first number (which is stored in the
variable num1). Line 12 asks the user to provide some value for the second number (which is stored in
the variable num2). Line 13 displays some text; however, part of the text must be obtained by first
calling the function min. This transfers control to line 1 (where min is defined). The two actual
parameters, num1 and num2, are then passed in and mapped to the formal parameters defined in min, a
and b. Then, line 2 is executed and performs a comparison of the two numbers. Since a = 34 and b =
55, then the condition in the if-statement is true. Therefore, line 3 is executed before control is
transferred back to the main program with the value of the smaller number returned (and then control
continues on to line 14). Note that lines 4 and 5 are never executed in this case!

Line 14 is then executed and displays some text. Again, part of the text must be obtained by first calling
the function max. This transfers control to line 6 (where max is defined). The variables a and b take on
the values 34 and 55 respectively. Line 7 is then executed, and the result of the comparison is false.
Therefore, line 8 is not executed. Control then goes to line 9, and then to line 10 which returns the
larger value. The program then ends.

Gourd, Kiremire, O'Neal 44 Last modified: 01 Mar 2016

What is the order of execution if a = 55 and b = 34?

What if a = 100 and b = 100?

Knowing the order in which statements are executed is crucial to debugging programs and ultimately to
creating programs that work.

Sequences
The most basic data structure in Python is the sequence. A sequence is composed of (related) elements.
Each element in a sequence is assigned an index (or position). A sequence with n elements has indexes
0 to n–1. Python has many built-in types of sequences; however, the most popular is called the list.

The list in Python is quite versatile and is declared using square brackets; for example:
grades = [94, 78, 100, 86]

The statement above declares the list grades with four integers: 94, 78, 100, and 86. The list can be
displayed in its entirety (e.g., with the statement print grades); however, we can access each
element individually by its index (specified within brackets). Accessing can mean to read a value in the
list, or it can mean to change a value in the list; for example:

grades[0]
grades[3] = 87

Here's an example of this:

Gourd, Kiremire, O'Neal 45 Last modified: 01 Mar 2016

Note that, in Python, the values within a list do not need to be of the same data type! This is a bit
different than lists in most other general purpose programming languages (usually, those languages call
their lists arrays) in which all elements must be of the same type. Here's an example of a
heterogeneous (meaning diverse) list in Python:

stuff = [3.14, 2.78, 100, "100", "the speed of light!"]

More than one value in a list can be accessed at a time. We can specify a range (or interval) of indexes
in the format [lower:upper+1] which means the interval [lower, upper) (i.e., closed at lower and
open at upper). That is, the lower index in the range is inclusive but the upper is not. For example:

stuff[3:4] # accesses index 3 (the same as stuff[3])
stuff[0:5] # accesses indexes 0 through 4
stuff[-3] # accesses the third index from the right

Gourd, Kiremire, O'Neal 46 Last modified: 01 Mar 2016

Here are some examples:

Note the difference between the element 100 (a number) at index 2 and the element '100' (a string) at
index 3.

List elements can be deleted with the del keyword as follows:
del stuff[2]

Gourd, Kiremire, O'Neal 47 Last modified: 01 Mar 2016

Python provides several built-in operations that can be performed on lists. Here are many of them:

len(list) Returns the length of a list

max(list) Returns the item in the list with the maximum value

min(list) Returns the item in the list with the minimum value

list.append(item) Inserts item at the end of the list

list.count(item) Returns the number of times an item appears in the list

list.index(item) Returns the index of the first occurrence of item

list.insert(index, item) Inserts an item at the specified index in the list

list.remove(item) Removes the first occurrence of item from the list

list.reverse() Reverses the items in the list

list.sort() Sorts a list

Gourd, Kiremire, O'Neal 48 Last modified: 01 Mar 2016

Searching and sorting examples
In previous lessons, we designed several searching algorithms (sequential/linear search and binary
search) and sorting algorithms (bubble sort, selection sort, and insertion sort). We first specified them in
pseudocode, and for some we showed how they could be implemented in Scratch. To help get a better
understanding of Python, let's revisit some of these and see how they could be implemented in Python.

First, let's implement a simple sequential/linear search. Recall the pseudocode for the algorithm:
n ← value to search for
i ← 1
found ← false
repeat

if value of item i in the list = n
then

found ← true
else

increment i
end

until i > the length of the list or found = true
display found

First, we see that the algorithm makes use of a repeat-until construct that Python doesn't have. We must
convert it to a while construct instead. The following condition must be changed so that it works within
a while construct:

repeat
...

until i > the length of the list or found = true

The until condition must be converted to an appropriate inverse while condition:
while i < the length of the list and found != true

...

Convince yourself that the conditions resulting in execution of the body of the loop are indeed the same.

In addition, we know that Python lists begin at index 0. Therefore, we will have to initialize the variable
i to 0 to reflect this.

Gourd, Kiremire, O'Neal 49 Last modified: 01 Mar 2016

Let's see how this simple algorithm can be implemented in Python (with a few frills):

Here's how it looks in IDLE with a few sample runs:

Gourd, Kiremire, O'Neal 50 Last modified: 01 Mar 2016

Take a closer look at the sample executions of the sequential search algorithm. Note how the values to
search for (i.e., the various values of n) were picked to adequately (and fully) test the algorithm. The
first value, 7, represents some arbitrary element in the middle of the list (i.e., not at the beginning or the
end). The second and third values, 5 and 12, represent the first and last elements in the list respectively.
The final value, 10, represents an item not in the list. This tests the boundary conditions (first, last,
none), which is an important part of testing any algorithm.

Now let's take a look at the insertion sort algorithm that was implemented in a previous activity:
n ← length of the list
i ← 2
repeat

if item i of list < item i-1 of list
then

temp ← item i of list
j ← i – 1
repeat

if item j of list > temp
then

replace item j+1 of list with item j of list
end
j ← j – 1

until j = 0 or item j of list not > temp
replace item j+1 of list with temp

end
i ← i + 1

until i > n

Gourd, Kiremire, O'Neal 51 Last modified: 01 Mar 2016

This algorithm was tailored for Scratch. Recall that lists in Scratch begin at index 1 (they begin at index
0 in Python). Also recall that Scratch has a useful replace item n of list l with x block. Python has no
such convenient construct. However, we can modify the algorithm to work in Python as follows:

The commented list in the second line makes it simple to test different lists. Here's how it looks in IDLE
with a few sample runs (where the initial lists are different):

Gourd, Kiremire, O'Neal 52 Last modified: 01 Mar 2016

Ready to try one on your own? Recall the pseudocode for the binary search (an efficient search that
only works on sorted lists):

num ← number to search for
n ← number of items in the list
repeat
 mid ← floor(n / 2) + 1
 if num = item at mid of the list
 then
 display "num was found!"
 stop
 else if num > item at mid of the list
 then
 discard items at 1 through mid of the list
 else
 discard items at mid through n of the list
 end
 n ← number of items in the list
until n = 0
display "num was not found!"

Gourd, Kiremire, O'Neal 53 Last modified: 01 Mar 2016

This algorithm was tailored to work in Scratch. In general purpose programming languages, we
typically do not discard items from a list. Instead, we leave them there and figure out another way to
effectively remove elements from consideration. Here's a modified algorithm for the binary search that
implements this idea:

num ← number to search for
found ← false
first ← 0
last ← number of items in the list - 1
while first <= last and found != true
 mid ← floor((first + last) / 2)
 if num = item at mid of the list
 then
 found ← true
 else if num > item at mid of the list
 then
 first ← mid + 1
 else
 last ← mid - 1
 end
display found

Try to implement this algorithm in Python in the space below:

Gourd, Kiremire, O'Neal 54 Last modified: 01 Mar 2016

Here are some sample runs in IDLE of a working binary search algorithm:

Activity 1

See the Raspberry Pi Activity 2: My Binary Addiction v2 document.

The for loop
As briefly mentioned earlier in this lesson, Python provides one more repetition construct called the for
loop. Typically, while loops are considered to be sentinel-driven; that is, they require a condition to
either be true or false that indicates execution of the statements in the loop. Recall that Scratch also had
a repeat-n block that repeated a task a set (or fixed) number of times. This kind of loop can be
implemented in Python using the for loop construct.

The structure of a for loop in Python is:
for iterating_variable in sequence:

loop_body

Gourd, Kiremire, O'Neal 55 Last modified: 01 Mar 2016

So far, the only sequence that has been discussed is the list. Here's an example that uses the for loop on
a list:

The variable list_item is used as an iterator. That is, it takes on the value of each item in the list at
each iteration of the for loop. The first time, list_item takes on the first item in the list, 2. The
second time, it takes on the second item in the list, 4. Eventually, it takes on the last time in the list, 8.
In total, the body of the for loop executes once for each item in the list (or four times).

The for loop is actually quite powerful and flexible. It can, for example, iterate through the letters of a
string:

Gourd, Kiremire, O'Neal 56 Last modified: 01 Mar 2016

Typically, for loops iterate through a counter. The counter can then be used to refer to a variety of
things, including the index of the elements of a list. To structure a for loop such that it iterates, say from
0 through 8, we would use the built-in Python function, range():

The range() function typically takes two parameters: a start value and a stop value. The start value is
included in the range; however, the stop value is not. For example, to iterate from -10 to 10:

for i in range(-10, 11)

Note that an optional third parameter can be specified to indicate a step value. For example, suppose
that you wish to iterate from 0 to 100 in increments of 10 (i.e., 0, 10, 20, …, 90, 100):

for i in range(0, 101, 10)

More on the for loop will be discussed later.

Gourd, Kiremire, O'Neal 57 Last modified: 01 Mar 2016

Exiting loops early
Sometimes, we wish to exit a loop before it is completely finished. Take, for example, the following
sequential search:

Note that the variable found is used to break out of the loop if it is set to true (i.e., the specified value has
been found in the list). We could modify this algorithm to not use the variable found and, instead,
simply exit the loop early as follows:

Note the reserved word break. It is used to break out of a loop construct early (i.e., possibly before all
of the iterations have completed). In the case above, if the specified value is found in the list, an
appropriate message is displayed, and control breaks from the while loop and is transferred to any
statements located beneath the while loop (there are none in the example above).

Gourd, Kiremire, O'Neal 58 Last modified: 01 Mar 2016

You may have noticed that the snippet above does not contain a message if the specified value has not
been found (unlike the example shown earlier in this lesson). Loop constructs in Python also support an
else clause (much like if-statements). For the while loop, the else clause occurs when the condition
becomes false. Take, for example, the following modification of the sequential search:

This change would inform the user if the specified item was not found in the list (i.e., a search through
the entire length of the list has completed). Note that, if the specified item is indeed found in the list, the
break statement is reached which breaks out of the entire while loop (including the else clause). For
this reason, the not found message is not displayed if the specified item is actually found in the list.

Gourd, Kiremire, O'Neal 59 Last modified: 01 Mar 2016

The same thing can be done with for loops. That is, a break statement and an else clause can be included
if desired. Here's an example of the sequential search using a for loop:

Gourd, Kiremire, O'Neal 60 Last modified: 01 Mar 2016

Other operators
Python provides two more classes of operators: membership operators and identity operators. Although
some have been used and introduced in previous examples, they have not yet been formally discussed.

Membership operators test for some value's membership in a sequence (e.g., to test if an element exists
in a list, or if a character exists in a string). For the following table, assume that list = [1, 3, 5, 7, 9], x
= 2 and y = 3.

Python Membership Operators and Examples

in Returns true if a specified value is in a
specified sequence or false otherwise

x in list is False; y in
list is True

not in Returns true if a specified value is not in a
specified sequence or true otherwise

x in list is True; y in list
is False

You have seen this in previous for loop examples (e.g., for i in list).

Here are a few examples in IDLE:

Identity operators are primarily used in the object-oriented paradigm and will be discussed at a later
time.

Gourd, Kiremire, O'Neal 61 Last modified: 01 Mar 2016

String methods
Strings are often necessary when writing programs. As such, Python provides a variety of methods that
work on strings. You have already seen one such method, format(), that formats a string as specified
(we did this earlier in one variant of the print statement). The following table lists some of the more
useful string methods:

Python String Methods/Functions

str.capitalize() capitalizes the first character of a string

str.find() returns the first index of a string within another string

str.format() formats a string according to a specification

str.isdigit() determines if a string consists only of numeric characters

str.lower() converts a string to lowercase

str.replace() replaces all occurrences of a string (within a string) with another string

str.split() returns a list of the words in a string

str.upper() converts a string to uppercase

These string methods are explained in greater detail in a variety of online sources. We suggest that you
Google them and try them out. Here are a few examples in IDLE:

Note the execution of the string method str.find() above: s.find("going"). This string method
returns the first index of the string, “going”, within the string, s. Why is the result 17? At first glance, it

Gourd, Kiremire, O'Neal 62 Last modified: 01 Mar 2016

seems that the first character of the string, “going”, is at position 18. However, the characters of a string
in Python begin at index 0 (similar to lists).

Importing external libraries
It is often useful (and necessary) to import external functionality into our programs. Often, others have
designed functions and other bits of code that may prove useful. We don't always want to recreate things
that already exist. Python supports the importing of such things via the import reserved word. For
example, many of the programs we create require the use of mathematical functions (beyond simple
arithmetic; e.g., sin, cos, tan) or mathematical constants (e.g., pi, e). The structure of an import
statement is as follows:

import library

Pretty simple. Here's an example of the importing and use of the math library:

Gourd, Kiremire, O'Neal 63 Last modified: 01 Mar 2016

Note in the example, the invalid use of pi before importing that math library. In addition, any value or
function used in a library must be fully qualified with the name of the library (e.g., we need to specify
math.pi and not just pi). Alternatively, we can itemize what we wish to import from a library. This
allows us to use values and functions directly without having to specify the library name. Here is an
example:

Gourd, Kiremire, O'Neal 64 Last modified: 01 Mar 2016

