
The Science of Computing II Living with Cyber

Lesson 3: Chaos Pillar: Algorithms

In this lesson, we are going to study chaos and order.  While they intuitively mean the complete opposite 
of each other, we will find out that there is in fact a very close relationship between the two.  Often, if 
you look closely enough at something apparently chaotic, you may find that there is some order to it 
after all.

The coordinate system
A coordinate system allows us to represent positions of a specified dimension in a reproducible fashion. 
This means that if someone describes a position to us using a coordinate system, we can accurately 
represent that position.  For example, the two-dimensional coordinate system allows us to represent 
points on a flat plane (similar to the page of a book or a white board on a wall).  The system is made up 
of two axes that are perpendicular (i.e., at 90 degrees) to each other, and which meet at a point referred 
to as the origin.  The position of any point on that plane is described using two values that describe how 
far away from the origin the given point is along both predefined axes.  We typically refer to these axes 
as X and Y, with the X-axis oriented horizontally (i.e., left-to-right), and the Y-axis oriented vertically 
(i.e., up-to-down).  Although this represents a way to locate points in two dimensions, we can extend this 
to more dimensions.  For example, we can add an axis oriented at an angle (technically, you can think of 
it as being perpendicular to both the X- and Y-axes and going through the page or the white board).  This 
adds a third dimension to the coordinate system and allows the location of objects in three-dimensional 
space.

Each axis in a coordinate system has values along it that demarcate one-dimensional positions.  
Although we have freedom in what those values are, we typically center the origin at the X-value 0 and 
the Y-value 0.  We call this a point.  The origin, then, rests at point (0, 0).  The values along an axis 
typically increase or decrease by 1.  Here's an example of a two-dimensional coordinate system:
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When specifying points on the coordinate system, we typically list the X-component first, followed by 
the Y-component.  That is, the point (2, 3), for example, has an X-value of 2 and a Y-value of 3.  We 
could plot this point as follows:

Activity 1: Plotting points

Can you place these five points in their proper positions on the coordinate system below: (3, 5), (5, -2), 
(1, 2), (-3, -5), and (-4, 0)?
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Another benefit of using the coordinate system for describing the position of different points is that it 
allows us to easily calculate and plot a point in the middle of two points.  We call such a point the 
midpoint of the two points.  If two points were drawn on a plain piece of paper, and we were asked to 
mark the point in the exact middle of those two points, it would be a long and (many times) inaccurate 
process.  However, having the coordinates of the two points makes this simple.  The midpoint of two 
points is calculated by adding the corresponding coordinates and dividing by two to find the average of 
each component.  For example, the midpoint of the points (5, -2) and (1, 2) is given by the following 
coordinates:

 ( 5+1
2

,
−2+2

2 ) = (3,0)

That is, the x- and y-components of each point are averaged to find the x- and y-components of the 
midpoint.  Similarly, the midpoint of the points (-3, -5) and (7, 3) is given by the following coordinates:

(−3+7
2

,
−5+3

2 ) = (2,−1)

Try to calculate the midpoints of the following point combinations in the space below:

Points (0, 0) and (4, 4): 

Points (-3, 5) and (-1, -3): 

Points (4, -4) and (-4, -4): 

Now plot the given points and the calculated midpoints below:
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The chaos game
The chaos game is an interesting (and, hopefully, fun) game that illustrates how seemingly random and 
chaotic things can produce something orderly (and beautiful) over time.  It works in a simple manner.  
First, plot the three vertices of an equilateral triangle.  An equilateral triangle is unique in that each of its 
three sides are the same length, and each of its three vertices are equidistant to each other.  Since the 
internal angles of a triangle always sum to 180 degrees, each angle of an equilateral triangle is the same 
(i.e., each angle is 60 degrees).

Here is an example of the vertices of an (almost) equilateral triangle:

Notice that the three vertices of the equilateral triangle are drawn on a coordinate system at the points 
(0,0), (15,0) and (7.5,13).  Although these points are not “perfectly” equidistant, they are nearly so (and 
good enough for this example).

Second, randomly select two of the three vertices.  Suppose that the top and bottom-right vertices are 
randomly selected.  Calculate the midpoint between these two vertices using the midpoint formula as 
illustrated above.  In general, given two points (x1, y1) and (x2, y2), the midpoint can be calculated as 
follows:

( x1+x2

2
,
y1+ y2

2 )
The midpoint of the top and bottom-right vertices at points (7.5, 13) and (15, 0) is calculated as follows:

( 7.5+15
2

,
13+0

2 ) = (22.52
,
13
2 ) = (11.25,6.5)

The midpoint, (11.25, 6.5), is then plotted on the coordinate system.

Gourd, Kiremire 4 Last modified: 25 Jan 2016

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0



The game now follows a repeatable pattern.  The calculated midpoint at point (11.25, 6.5) is selected, 
along with one randomly selected vertex of the equilateral triangle.  Suppose that the top vertex at point 
(7.5, 13) is randomly selected.  A new midpoint is now calculated:

( 11.25+7.5
2

,
6.5+13

2 ) = ( 18.752
,
19.5
2 ) = (9.375,9 .75)

this new midpoint is then plotted on the coordinate system, and the process continues (i.e., the latest 
midpoint is selected, along with a randomly selected vertex of the equilateral triangle).  Here is the 
algorithm in pseudocode:

v1, v2, v3 ← three vertices of an equilateral triangle
plot v1, v2, and v3

p1, p2 ← two randomly selected vertices from v1, v2, and v3

m ← the midpoint of p1 and p2

plot m
repeat

v ← a randomly selected vertex from v1, v2, and v3

m' ← the midpoint of m and v
plot m'
m ← m'

until midpoints plotted >= 1500 or tired

By playing the chaos game for some time, what do you think will happen?  Where do you think the 
points will focus on the coordinate system?  Will they collect in any one place at all?

Activity 2: The chaos game...manually

Let's play this game a little bit to see if anything can be gleaned (i.e., if anything reveals itself).  Mainly, 
we want to see if the points just randomly fill the coordinate system, or if they somehow produce 
something orderly.

To obtain results quickly, let's use blank sheets of paper (or even better, transparencies).  Everyone 
should plot the exact same vertices of an equilateral triangle.  From there, play the chaos game and plot 
approximate midpoints.  That is, estimate as best as possible (by looking) where the midpoint should be 
plotted.  Remember that, to plot the first midpoint, two random vertices are selected.  From that point 
on, the last plotted midpoint and one randomly selected vertex is used to compute the next midpoint.

Each student should repeat this process on his/her own individual paper or transparency at least 25 
times.  It's best to plot at least 100 midpoints.  The paper or transparency can then be combined with 
those of the other students to see what (if anything) is formed.  If using transparencies, simply lay them 
on top of each other, aligning the vertices.  The result should be clearly visible.  If using paper, the 
procedure is the same; however, you will need to hold the stack of paper to the light (note that it may be 
difficult to see all of the points).

So what is the result?
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Did you know?

For any pattern to be revealed, a single person would have to plot thousands of points (which would 
take a really long time).  There is a whole branch of computer science that deals with making computers 
faster, particularly for large tasks.  One of the techniques that addresses this involves dividing tasks so 
that small sub-tasks are done concurrently (i.e., at the same time).  This field is called high 
performance computing, and the technique employed is called parallelism.

Activity 3: The chaos game...automated

As you can see, it takes a lot of points to plot anything reasonable.  That is, in order to actually see if 
anything orderly is produced when playing the chaos game, a lot of midpoints must be calculated and 
plotted.

There are also a lot of other interesting things that can be tried.  For example, what would happen if the 
three vertices were not equidistant; that is, what if the triangle were different?  What if we plotted a 
square instead (i.e., four vertices instead of three)?  What about a pentagon?  What would happen if, 
instead of plotting midpoints, points at varying distances were plotted instead.  For example, would the 
result be different if a three-fourths point was plotted instead each time (i.e., instead of 50% of the 
distance to the randomly selected vertex, 75% of the distance).  What about 10% of the distance?  What 
would happen if there was an additional rotation about the randomly selected vertex?  That is, what 
would be the result if some midpoint (or other distance) were calculated and then rotated about the 
vertex some number of degrees (some angle)?

These are all interesting questions that may result in absolute randomness (or perhaps not!).  It would be 
quite difficult to try these manually.  Why not automate this process?  A frequent task of computing 
professionals is to automate things that tend to be repeated.  To illustrate a number of changes to the 
chaos game in a configurable manner, a simple application has been created to test out all of the 
options.

The goal of this activity is to play around with this application to see how changes to the chaos game 
affect the outcome.  Try your hand at it!

Fractals
By now, you should have noticed that the result of the original chaos game (i.e., three vertices of an 
equilateral and repeatedly plotting midpoints) results in a beautiful triangular shape.  In fact, this shape 
has an interesting property: it has its pattern repeated over and over.  It's as if we could zoom in forever 
and obtain the same pattern!  This property is found in fractals.  this particular fractal has a name: the 
Sierpinski Triangle.

A fractal is a geometric shape that can be (infinitely) broken down into similar parts.  This means that it 
is made up of many parts that are just smaller versions of the whole thing.  And these smaller parts are 
then made up of even smaller versions of the whole thing.  And this goes on infinitely (well, basically).  
Of course, our eyes can't see this going on infinitely because things get too small.

Randomness and probability
In the chaos game, random vertices of an equilateral were repeatedly selected.  What does random mean 
exactly?  We have seen that there is sometimes order in chaos if you look long and close enough.  That 
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being said, there are things that seemingly happen in a haphazard manner, have no predictable pattern, 
and are not predetermined.  Such things are called random.  Think of selecting one of the three vertices.  
We have no way of predicting which vertex will be selected.  Any one could be selected at each 
iteration.  Think of rolling a die.  There is no way to predict which number will be rolled next (other than 
to say that it will be between 1 and 6 inclusive).

Even with random things, human beings have come up with a way of measuring the randomness, and 
that way is called probability.  Probability is a way of expressing the knowledge that something will 
happen.  If something is definitely going to happen (i.e., it's absolute certainty), it is said to have a 
probability of 1.  If something is definitely not going to happen (i.e., it's an impossibility), it has a 
probability of 0.  Of course, there are an infinite amount of values in between 0 and 1.  That is, the 
probability that something could happen can be stated as a value between 0 and 1.

Formally, probability is defined as the ratio of the number of ways of achieving success to the total 
number of possible outcomes.  For example, consider the flipping of a coin.  There are two possibilities 
when flipping a coin: either heads or tails.  So there are two possible outcomes.  The probability of 
rolling heads when flipping a coin is then 1/2.  Why?  The only way to roll heads is, well, to roll heads.  
That is, there is only one way to achieving success.  Since there are two possible outcomes when 
flipping a coin, the probability of rolling heads is therefore 1/2 (one way of achieving success out of two 
possible outcomes).  Similarly, the probability of rolling tails when flipping a coin is also 1/2.

What is the probability of picking the top vertex in the chaos game?  There's only one way to do so out 
of three possible vertices.  Therefore, the probability is 1/3.

Let's go back to rolling a typical (six-sided) die.  What is the probability that a three is rolled?  Rolling a 
three represents the only way to achieve success.  There are six possible rolls of the die.  Therefore, the 
probability of rolling a three is 1/6.

What is the probability that an even number is rolled?  Well, how many ways are there of achieving 
success?  That is, how many ways can an even number be rolled?  Three (rolling a two, four, or six).  
The possible outcomes are, of course, rolling a one through six.  So the probability of rolling an even 
number is 3/6 = 1/2.

What is the probability that a number less than six is rolled?  There are five ways to roll a number less 
than six.  There are six possible rolls of a die.  The probability is therefore 5/6.

What is the probability of rolling two die and getting a total of 7?  This one is a bit tricky!  We'll discuss 
this later (but if you want to know, it's 1/6).
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Activity 4: Heads and tails...sort of

For this activity, we will repeatedly flip two coins simultaneously and record the results.  The two coins 
can either both be heads, both be tails, or they can be different (i.e., one is heads and one is tails).  So 
there are three possible outcomes to this game.  The probability of rolling two heads is therefore 1/3, 
two tails is also 1/3, and one heads and one tail is also 1/3.

To make this interesting, let's make it a game.  If the coins come up both heads, all of the male students 
in the class get a point.  If the coins come up both tails, all of the female students in the class get a point. 
If one coin comes up heads and one comes up tails, the prof gets a point.  The group (or individual) with 
the most points at the end of some number of flips (say, 15) wins.

Record the results below:

Male Students               Female Students           Prof

Over time, you will find that the students lose more often.  It appears that the heads and tails 
combination happens significantly more often than initially thought.  In fact, the previously calculated 
probabilities (each 1/3) seem incorrect.

The purpose of this activity is to show that perceived probabilities are often different from actual 
probabilities (i.e., humans are not always so good at estimating probabilities).  Think of it like this: 
there is only one way of rolling two heads (both coins must come up heads).  There is only one way of 
rolling two tails (both coins must come up tails).  Contrary to what was previously assumed, there are 
two ways of rolling one heads and one tails: the first coin can be heads and the second coin can be tails, 
or the first coin can be tails and the second coin can be heads!  In fact, there are a total of four possible 
outcomes.  The rolling of two coins can then be shown in the following table:

Coin 1      Coin 2
heads   heads
heads   tails
tails   heads
tails   tails

The probability of rolling two heads is 1/4 (one possible way of achieving success out of four possible 
outcomes as show above).  The probability of rolling two tails is also 1/4.  But the probability of rolling 
a heads and a tails is actually 2/4 = 1/2!  The prof wins 50% of the time!  Another way of saying this is 
that the prof wins twice as much as either group of students!  Ka-ching!

When you realize how rigged this simple game is, you can begin to think about how even more rigged 
other games (such as slot machines, the lottery, etc) are...

Try to calculate the probability of rolling three coins and getting three heads.  Or three tails.  Or one 
heads and two tails.  Or one tails and two heads.  To assist you, list all of the possible combinations of 
rolling three coins in the table below:
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Coin 1            Coin 2            Coin 3

Probability of rolling three heads: 

Probability of rolling three tails: 

Probability of rolling one heads and two tails: 

Probability of rolling one tails and two heads: 

Random number generators
In the last RPi activity (titled My Binary Addiction...Reloaded), you may have noticed the use of a 
library that allowed the generation of random numbers.  In the activity, it was used to generate random 
bits (0 or 1) for each of the two 8-bit numbers (in order to generate two random 8-bit numbers).  The 
library was called random and was imported as follows:

from random import randint

The function randint was then used to generate the random numbers.  As mentioned earlier in this 
lesson, a truly random event has no predictable pattern.  Unfortunately, there is no easy way for that to 
happen using a computer, even for a task as simple as selecting random numbers within a specific range. 
As a solution, computers typically use a pseudo-random process to create random numbers in a range.

Definition: A pseudo-random process is one that appears to be random but is technically deterministic  
in nature.  This means that the process looks completely random, and yet its pattern is predictable and 
can be reproduced exactly.

When tasked with creating a random number (or group of numbers), computers typically use a pseudo-
random process to produce that number.  This means that, given enough generated numbers, one can 
observe that the created numbers follow a certain sequence.  For most purposes, however, the amount of 
numbers one would require to observe that the pattern is predictable is too large (so the numbers seem 
random).

For most cases, pseudo-random numbers are adequate and even beneficial.  How?  For instance, often 
researchers replicate experiments in order to confirm (or refute) experiments performed by peers.  For a 
scientist to make any claim about any experiments carried out, enough information for someone else to 
reproduce those same results with an experiment of their own must be provided.  When a random 
number (or list of random numbers) is used in an experiment, there would be no way of replicating those 
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exact numbers (and therefore obtaining the same results as in the original experiment).  However, since 
computers produce pseudo-random numbers (which can be replicated exactly), it allows other 
researchers to carry out their own versions of the original experiment and crosscheck to see if the results 
are identical.

In order to actually generate repeatable (even predictable) patterns of random numbers, most pseudo-
random number generators can be configured or initialized with a seed.  A seed is just a number that is 
used to initialize a pseudo-random number generator.  Most generators use the current time (to the 
second) as the seed.  Clearly, this means that generating a sequence of random numbers will be different 
each time (since time moves forward continuously).  We can, however, specify a seed of our own so that 
the pseudo-random number generator will always provide the same sequence of numbers!

Activity 5: Seeded pseudo-random numbers

Let's create a simple program generates 100 pseudo-random numbers (in the range 0-99) twice:
from random import randint

for i in range(1, 101):
print "{}\t".format(randint(0, 99)),
if (i % 10 == 0):

print
print
for i in range(1, 101):

print "{}\t".format(randint(0, 99)),
if (i % 10 == 0):

print

Note the use of "\t" (which prints a tab and is typically eight spaces in width).  Characters that begin 
with a backslash (\) are known as escape characters.  Escape characters typically allow the 
representation of unprintable characters (such as a tab, newline, carriage return, etc).  Most general 
purpose programming languages (including Python) support these unprintable characters.  Here are 
some common ones:

\n Linefeed (like pressing Enter)
\t Horizontal tab

Note that there are many others, some of which are even programming language specific.

The program above first displays 100 random integers in the range 0-99, and formats them such that ten 
integers are displayed on each line (i.e., ten rows of ten columns).  They are aligned at the columns via a 
horizontal tab that follows each integer.  Note the comma at the end of the print statement.  This 
instructs Python to omit a typically default linefeed at the end of the print statement.  Once ten integers 
have been display on a single line (i.e., i % 10 == 0), a blank line is added (via the solitary print 
statement).  The program then displays another 100 random integers in the same manner.  Note the 
variety (and randomness) of the generated integers, although generating 200 integers in the range 0-99 
will undoubtedly produce duplicates.

Gourd, Kiremire 10 Last modified: 25 Jan 2016



In the above example, the pseudo-random number generator was seeded with the current time (by 
default since no numeric seed was provided).  Let's modify the algorithm and use an identical (but 
specified) seed value for each 100 random integers:

from random import randint, seed

seed(123456)
for i in range(1, 101):

print "{}\t".format(randint(0, 99)),
if (i % 10 == 0):

print
print
seed(123456)
for i in range(1, 101):

print "{}\t".format(randint(0, 99)),
if (i % 10 == 0):

print

In this case, the numeric value 123456 is used as the seed to generate both groups of 100 integers.  
Technically, the seed could be any value (e.g., 0, some variable containing a value, even the 
mathematical constant pi).  In fact, we could have randomly generated a seed!

seed(randint(0, 65535))

Now that you have seen how to use Python to generate pseudo-random integers, let's try to write a 
programs that implements some of the activities shown earlier in this lesson.

Activity 6: Rolling two dice

Earlier we discussed rolling a single die and the associated probabilities of each possible roll.  Then, we 
asked what the probability of rolling two dice and getting a total of 7.  Let's try to write a Python 
program that iterates through all of the possibilities when rolling two dice:
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The comments in the source code above pretty well explain the statements.  Note the last line of the 
program; specifically, the third parameter that replaces the formatting braces: dice_sums[i] * 
1.0 / sum[dice_sums].  This expression takes the i-th sum frequency and converts it to a 
floating point number by multiplying it by 1.0.  This product is then divided by the total number of sum 
frequencies (the function sum() calculates the sum of a list – in this case, the list dice_sums).  The 
conversion of one of the terms to floating point is necessary to ultimately produce a floating point 
division.
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And here is the output of the code:
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The number of total sums possible is 36.  We can calculate this by taking the sum of the frequencies (1 
+ 2 + 3 + 4 + 5 + 6 + 5 + 4 + 3 + 2 + 1 = 36).  Since there are six rolls that sum to 7, then the probability 
of rolling two dice and getting a 7 is 6/36 = 1/6.  In fact, the probability of rolling two dice and getting a 
7 is higher than anything else!

Now let's try to roll two dice many times and see what results we end up with.  Perhaps the frequencies 
of the sums will match the frequencies shown above!  Here's the code:

Again, the comments should be adequate to explain the source code.  Much of the code is similar to the 
last program.
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And here is the output (with 5,000 rolls):

Note the probabilities.  Although they are not exactly the same as calculated before, they are very 
similar!  More accurate results would be possible with a much higher number of rolls (try one million!).
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