
The Science of Computing II Living with Cyber

Lesson 5: The Object-Oriented (OO) Paradigm Pillar: Computer Programming

As discussed in lessons early in the curriculum, three paradigms of programming languages have
emerged over the years: the imperative paradigm, the functional paradigm, and the logical paradigm. A
language is classified as belonging to a particular paradigm based on the programming features it
supports. In addition, during the past decade or so these paradigms have been extended to include
object-oriented features. Some computer scientists view object-oriented programming as a fourth
paradigm. Others prefer to view it as an extension to the imperative, functional, and logical paradigms,
in that object-oriented constructs and behaviors are often viewed as higher-level organizational attributes
that can be incorporated into each of the three basic paradigms, rather than as a separate programming
paradigm unto itself.

Object-oriented concepts have revolutionized programming languages. The vast majority of widely
used programming languages are now object-oriented. In fact, they are, by far, the most popular type of
programming languages. Python, Java, and C++ are object-oriented, imperative languages.
Specifically, Python is an imperative, interpreted language that can optionally be object-oriented. That
is, non-object-oriented programs can be written in Python if desired. In a sense, this makes Python quite
powerful (like a Swiss army knife of programming).

The object-oriented paradigm is an elegant and clean way to conceptually think about computer
programming. When used properly, it can produce programs that are more robust, less likely to have
errors, and are easy for others to understand and modify. Specifically, the object-oriented approach adds
the concepts of objects and messages to the paradigms listed above. We don't think of programs as
procedures or lists of instructions to be executed in order from beginning to end; rather, we think of
them as modeling a collection of objects interacting with each other.

Essentially, programs and the data on which they act are viewed as objects. In order to perform a task,
an object must receive a message indicating that work needs to be done. Object-oriented languages are
extremely useful for writing complex programs; for example, programs that support mouse-based,
graphical user interfaces. Object-oriented programming helps in the construction of software systems by
enabling large, complex systems to be subdivided into isolated functional units with well-defined
external interfaces to other system components. There are many other distinguishing characteristics of
object-oriented programs, including inheritance, polymorphism, and data encapsulation. Some of these
will be discussed in this lesson, while others will be covered in later lessons.

State and behavior...the basic idea
We live in a world in which objects exist all around us. In fact, we interact with objects all the time. For
example, the author of this document interacted with a keyboard and mouse while writing this sentence!
The author's brain (an object) somehow sent a message to hands and fingers (all objects) to make contact
with keyboard keys (again, all objects). The keyboard (an object) somehow sent a message to the
computer (an object made up of many other objects) to interpret key presses as characters to be placed in
this document (an object) and displayed on the screen (yet another object).

Fundamentally, an object is a thing. In object-oriented programming, the objects model things in our
problem domain. Objects have properties (or attributes) that, in a sense, define them. They capture the
properties or characteristics of an object. For example, a person object has many attributes, some of

Gourd, Kiremire, O'Neal, Blackman 1 Last modified: 03 Mar 2016

which include sex, name, age, height, hair color, eye color, and so on. These are the things that a person
can be. The collection of attributes that make up an object are called its state.

Objects can also do things. That is, they can have behaviors. In object-oriented programming, these
behaviors are implemented by program modules (e.g., methods, procedures, functions, etc) that contain
the instructions required to model the behavior in computer software. For example, a person object can
eat, sleep, talk, walk, and so on. The collection of actions that an object can do are called its behavior.

Collectively, state and behavior define an object. When you begin to adopt this way of thinking, you can
begin to see many things in our world as objects with attributes and behaviors interacting with other
objects.

Objects, classes, and instances
An object represents a specific thing from the real world with defined attributes. For example, “the
white truck down there parked by the road” is an object. It is a truck that could ostensibly be observed
on the road. In fact, it could be a white 2016 4x4 Dodge Ram 1500 with 450 miles on it.

Clearly, there exist other trucks in the world. In fact, there may even be other trucks parked by the road
next to the one just described. One could say, then, that the generic term truck could represent all kinds
of truck objects. Trucks are all basically different versions of the same thing. That is, they all behave
the same and have the same set of attributes; however, the values of those attributes is what sets them
apart. For example, one truck could be red and another white; one truck could be a Dodge and another a
Toyota.

A class represents a blueprint or template for those real world things with defined attributes (i.e., for all
of the objects that can be derived). For example, a truck class could be used to create many truck
objects. Another way of saying this is that a class is a collection of objects that share the same attributes
and behaviors. The differences between individual objects are abstracted away and ignored. So the
class can be thought of as the perfect idea of something. This occurs in the real world in, for example,
the way a child learns to abstract away the differences between Aunt Jamie's schnauzer, a best friend's
bulldog, and dad's boxer – and learns to classify them all as dogs.

This is not a new idea. Plato, quoting Socrates in The Republic, discusses the Theory of Forms or Ideas.
For example, no one has ever seen a perfect circle; however, we have an idea of what a perfect circle
should be. We have drawn many circles, but none of them were absolutely perfect. The perfect idea of
a circle would be considered a class, and each of the circles we draw would be considered objects.

Formally, a class defines the state and behavior of a class of objects. The fact that a truck has a color,
year, make, model, mileage, and so on, is defined in the class. The fact that a truck can haul, drive, turn,
honk, and so on, is also defined in the class. In fact, how a truck hauls, drives, turns, and honks is
specified in the truck class as well. From the truck class, many truck instances can be created, each
with potentially different attribute values making up each truck's unique state. We say that, from this
class, we can instantiate many objects. Usually, we use the term object and instance interchangeably.
That is, a truck object, for example, is just an instance of the truck class.

Gourd, Kiremire, O'Neal, Blackman 2 Last modified: 03 Mar 2016

Activity 1: The zoo

In this activity, you will play a game using an animal class. This class, formally called Animal, will
define what animals can be and do. Some of the students in the class will become objects of the class
Animal. The animal class defines several attributes that an animal has:

type: a string that represents the animal's type (e.g., dog)
appetite: an integer that represents how much daily food units the animal requires to live
stomach: an integer that represents how much food units are currently in the animal's stomach
alive: a Boolean that represents whether or not the animal is alive
sound: a sound that represents the sound the animal makes

The class also defines several behaviors that an animal can do (and that students will perform when
called upon):

talk(): make the sound the animal makes
burn(): use the animal's daily food units by subtracting appetite from stomach
eat(amount): increase the animal's stomach food units by the provided amount
getType(): tell the requester what the animal's type is (i.e., the value of type)
isAlive(): tell the requester if the animal is alive or not (i.e., the value of alive)

Note that if stomach is less than 0, then alive becomes false – and the animal dies...

Representing state and behavior
Objects store their state in instance variables. For example, a truck class could define the variable
year to represent the year a truck was manufactured. A specific truck object (or instance) would set
this variable to the year of its manufacture. In Python, this would be done with a simple assignment
statement. If, for example, the truck object were manufactured in 2016, then the statement year =
2016 would appropriately set the truck's year of manufacture. Another truck object could have a
different year of manufacture. Ultimately, the class defines instance variables; however, each object
stores its own unique set of values.

There are certain attributes that all instances of a class may want to share. Consider a class that defines
a person. Although each instance/object of the person class can be different and thus have unique values
stored in its instance variables (e.g., different sex, name, age, etc), all persons are Homo sapiens. All
persons share this scientific name. In fact, if an expert in the field were to rename (or perhaps refine) the
term Homo sapiens to something else, this would change for all persons, effectively at the same time.
This kind of behavior can also be replicated in the object-oriented paradigm.

A class variable defines a value that is shared among all the instances of a class. Unlike instance
variables that, when changed, only affect a single object, a change in a class variable affects all instances
of a class simultaneously. Essentially, a class variable is stored in memory that is shared among all the
instances of a class.

The behavior of objects is defined in methods (or functions) that can be invoked. For example, the turn
behavior of a truck could be defined in a function called turn. If necessary, this function could take
parameters as input and return some sort of output.

Gourd, Kiremire, O'Neal, Blackman 3 Last modified: 03 Mar 2016

Ultimately, a class has source code that specifies its state (through instance variables) and behavior
(through methods). Collectively, state and behavior are referred to as the members of a class. Let's take
a look at a simple example of a dog class in Python. For this example, a dog only has a name, and all
dogs are canines.

1: class Dog:
2: kind = "canine"

3: def __init__(self, dog_name):
4: self.name = dog_name

Line 1 represents the class header, which includes the Python keyword class and the name of the class
(in this case, Dog). Class headers are terminated with a colon, much like function headers. It is typical
to capitalize the names of classes. Moreover, class names should always be singular nouns since they
define the blueprint for a single thing.

Line 2 defines a class variable named kind that is initialized with the string “canine”. This value is
shared among all dogs. The reason that we consider kind to be a class variable is that it is defined
inside the class but outside any methods that are in the class. That is, class variables are defined at the
class level.

Lines 3 and 4 represent a function called __init__. In Python, functions that begin and end with two
underscores have special meaning. In fact, they are called magic functions. The __init__ function
provides an initialization procedure for each instance of the class. That is, the source code contained
within this method effectively defines what it means to initialize a new instance of the class. When we
want new instances of the dog class, this function is automatically invoked. Formally, this type of
function is called a constructor because it contains the source code required to construct a new instance
of the class. A constructor is automatically invoked each time we create an instance of a class. Its
purpose is to initialize an object, which typically means to set default values for one or more of the
instance variables.

In the dog class above, the constructor takes two parameters: self and dog_name. The first
parameter represents the instance that is about to be instantiated. This parameter is always required!
The second parameter represents the name of this new dog (e.g., Bosco). The function header indicates
that, to create a new instance of the dog class, a dog name must be provided. Line 4 then sets the
instance variable name for the object to be created. Note that self.name (on the left side of the
assignment statement) represents the instance variable (called name) for the dog class, and specifically
targets this dog instance's name (via self.name). The dot in between self and name is called the
dot operator and will be covered shortly. The variable dog_name (on the right side of the assignment
statement) is passed in to the function when a new instance of a dog is desired.

Instances of the dog class can be created as we need them. This typically occurs outside of the dog class
(for example, in a program that requires dog objects to interact with each other). Objects that are
instances of the dog class can be easily instantiated as follows:

5: d1 = Dog("Maya")
6: d2 = Dog("Biff")

Gourd, Kiremire, O'Neal, Blackman 4 Last modified: 03 Mar 2016

Line 5 declares a variable, d1, that represents an instance of the dog class. Specifically, d1 is a dog
whose name is “Maya”. Line 6 defines a variable, d2, that represents another instance of the dog class.
Specifically, d2 is a dog whose name is “Biff”.

When line 5 is executed, the variable d1 is mapped to the variable self in the __init__ function
(constructor) of the dog class. The variable self is a formal parameter. The variable d1 is the actual
parameter that is mapped to the formal parameter. Similarly, the string “Maya” (actual parameter) is
mapped to the variable dog_name (formal parameter). The statement self.name = dog_name
ultimately sets the instance variable name for this instance of the dog class to whatever was passed in as
the variable dog_name (i.e., Maya in this case).

Formally, the variable d1 is called an object reference. That is, it refers to an object (or instance) of the
dog class. The variable d2 is also an object reference of the dog class. We can access the members of a
class by using the dot operator. For example, we could change the name of d1 to Bosco as follows:

d1.name = "Bosco"

The above example shows how to modify an instance variable. Note that it only changes the name of
d1 and not d2 because the specified object reference is d1. Simply accessing (without changing) a
member of a class is just as easy; for example:

print d2.name

This statement would produce the output Biff (because d2's name is Biff). In fact, let's list the state of
each instance of the class dog, d1 and d2 (note that this is not Python source code; rather, it is an
enumeration of the instance variables and their associated values for the objects d1 and d2):

d1.name → Bosco
d2.name → Biff
d1.kind → canine
d2.kind → canine

You have actually seen (and used) the dot operator before. Consider the following statements:
name = "Joe"
welcome_string = "Hello, {}"
print welcome_string.format(name)

From these statements, we can infer that strings (specifically the string welcome_string in the
example above) are objects! In addition, the function format must be a member of the string class
since it can be accessed using the dot operator! In fact, the function format is part of the behavior of
the string class. This function takes one or more parameters that replace the empty braces in the string.

Gourd, Kiremire, O'Neal, Blackman 5 Last modified: 03 Mar 2016

Did you know?

In Python, instance variables don't need to be formally declared in the class. That is, they can be
defined as needed, dynamically. For example, although the dog class doesn't yet specify an instance
variable that defines a dog's breed, the following statement in the main part of the program effectively
adds the instance variable breed to the dog class. Specifically, it sets d1's breed to German Shepherd:

d1.breed = "German Shepherd"

It is standard practice, however, to formally define all instance variables in the class. This will be
further discussed later.

Instance variables vs class variables
Suppose that an expert in the field decided to change the scientific name for dogs from canine to
something like “caten”. You know, to account for inflation1. Changing class variables separately for
each instance of the dog class doesn't make sense. The purpose of a class variable is that its value is
shared simultaneously among all of the instances of the class. The proper method of changing a class
variable so that it appropriately affects all of the instances is to use the class name as follows:

Dog.kind = "caten"

This statement simultaneously changes the class variable kind (to caten) for all instances of the dog
class. To illustrate this, here is some source code for a dog class that illustrates the behavior and
differences of class and instance variables:

1 See Victor Borge's Inflationary Language (Google it!) for the meaning behind this.

Gourd, Kiremire, O'Neal, Blackman 6 Last modified: 03 Mar 2016

Did you know?

You may have noticed above that some statements seem to be spread across multiple lines. Each of the
lines that make up these statements end with a backslash (\), except for the last line of the statement.
Python allows the use of a backslash to note that the remainder of a statement is provided on the next
line. For example, take a look at the following statement:

a = 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 –
1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1

This statement can be spread across multiple lines as follows:
a = 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1\

 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1 – 1 + 1

Here is the output of the program in IDLE:

Note a few things: (1) the class variable kind is applied to both instances, d1 and d2; and (2) the
instance variable breed is dynamically created and applied (separately) to each instance.

Did you know?

For readability, Python source code is presented as it is formatted in IDLE throughout this lesson. the
main reason for this is that presenting source code this way provides syntax highlighting. Syntax
highlighting is the feature of highlighting (or coloring) certain portions of source code so that it helps
to categorize constructs, keywords, variables, and so on. It essentially helps to make the source code
more readable. For example, Python keywords are colored orange and strings are colored green.

Gourd, Kiremire, O'Neal, Blackman 7 Last modified: 03 Mar 2016

It is important to understand the difference between instance variables and class variables. Although
they seem similar, they are actually quite different. Perhaps this is best illustrated with an example.
Consider the following modified dog class:

The only difference in the class is the addition of the list tricks and the function add_trick. After
all, a dog can do tricks! Adding a trick to an instance of the dog class can be done by accessing the
add_trick function (using the dot operator) on an object reference of a dog instance and providing
the trick to add (as a string). As shown before, the dog instance is automatically passed in and mapped
to the formal parameter self in the function. The string that represents the trick to add is passed in and
mapped to the formal parameter trick. The function appends a new trick to the end of the list.

The expected behavior of the source code above may be that each instance of the dog class (i.e., d1 and
d2) can define their own set (or list) of tricks. In fact, we expect that Maya can “roll over” and that Biff
can “play dead”.

However, take a look at the output:

Gourd, Kiremire, O'Neal, Blackman 8 Last modified: 03 Mar 2016

The fact that both dog objects can do the same tricks can be explained by noting that the list tricks is
defined at the class level and is therefore considered a class variable. As such, all instances of the dog
class share the list. A change to it (even through the function add_trick) affects all instances of the
dog class! To fix this and make the list of tricks an instance variable, we can define it in the __init__
method as follows:

Since it is no longer at the class level, it is considered an instance variable and thus allows unique values
to be stored for each instance of the dog class. Here is the output of the above modified Python code:

Gourd, Kiremire, O'Neal, Blackman 9 Last modified: 03 Mar 2016

Now, take a look at this more complete dog class:

Note the addition of several new instance variables: breed and friends. This class defines all dogs
to have a name, a breed, a list of tricks, and a list of friends.

Here is the program's output in IDLE:

Gourd, Kiremire, O'Neal, Blackman 10 Last modified: 03 Mar 2016

At this point, it may be worthwhile to summarize the difference between class variables, instance
variables, and function parameters. Class variables are relevant to an entire class. The values of class
variables are shared among all of the instances of a class. Think of a class variable as being stored in a
single memory location that all the instances of a class can refer to. Instance variables are also relevant
to an entire class. However, the values of instance variables are unique for each instance of a class.
That is, an instance variable is stored in a different memory location for each instance of a class.
Function parameters are relevant to a function and are only accessible inside the function. They are
short-lived and last until the function has finished its execution.

Accessors and mutators
Consider the following simple dog class:

Now take a look at the output:

Everything seems to work fine; however, note that no dog can actually be -5 years old. This value is not
possible for a dog's age (at least not in the world that we live in). This illustrates an important point:
sometimes, we may want to check that the values supplied to function parameters are sensible. For
numeric types, we typically call this range checking. That is, we may need to ensure that a supplied
value falls within a valid range. For example, a valid range for a dog's age could be 0 to 292.
2 The oldest dog that ever lived was an Australian cattle dog named Bluey. He reached almost 29.5 years of age!

Gourd, Kiremire, O'Neal, Blackman 11 Last modified: 03 Mar 2016

Range checking is a subset of a more general concept called input validation, which attempts to
validate input (whether it be from a user during program execution, from actual parameters passed in to
a function's formal parameters, etc). To ensure proper execution of a program that processes inputs, the
inputs must first be validated. In the example above, the input to a dog's age must first be validated
before the instance variable is assigned the value of the input.

To accomplish this, we can define a mutator (also known as a setter) that provides write access to an
instance variable defined in a class. A mutator is a method that wraps an instance variable for the
purpose of input validation (and often access control in some object-oriented programming languages).
The instance variable still exists; however, to change it, the mutator must be called instead. Once the
supplied input is validated, the instance variable is then changed with the provided value.

Here is a modified dog class with a mutator for the instance variable age:

Note that the mutator is called setAge. Typically, we specifically set the name of a mutator to the
word “set” followed by the name of the instance variable (initially capitalized). Since the mutator's
purpose is to change the value of an instance variable, then that value must be passed in as a function
parameter. The mutator then performs range checking. In the case of the dog class above, a value from
0 through 29 is valid (and would subsequently be assigned to the instance variable age). To change the
value of a dog's age, the mutator must be called.

Gourd, Kiremire, O'Neal, Blackman 12 Last modified: 03 Mar 2016

Here is the output now:

Note that the attempt to change d1's age to -5 was not successful.

Using the function setAge as the mutator that enables modification of the instance variable age seems
a bit tedious. In a perfect world, changing d1's age (with input validation) would perhaps be done as
follows:

d1.age = 11

However, doing it this way would effectively bypass the mutator, setAge, and ignore input validation
(as seen in the earlier example). Python does provide a neat way to accomplish this, however. We often
call this kind of neat behavior syntactic sugar. Syntactic sugar just means that a programming language
provides a sensible (and often shorthand) way to accomplish a task that may, under the hood, be a bit
more convoluted.

Python provides direct support for wrapping instance variables with mutators that perform input
validation through a concept called a decorator. For now, a decorator is just a wrapper. It is something
that wraps something else. In this case, it is a mutator in the form of a function that wraps an instance
variable.

However, to properly explain how Python supports this, we must first discuss the concept of an accessor.
An accessor is a method that wraps an instance variable for the purpose of providing read access (i.e., to
allow us to read the the value of an instance variable). In Python, the meaning behind this is lost
because all of a class' instance variables are directly accessible. However, in other object-oriented
programming languages (such as Java, for example), we can enforce the privacy of instance variables.
That is, we can restrict them such that they can only be accessed through accessors and mutators.
Nevertheless, the only way that Python supports decorators as mutators is to additionally provide
decorators as accessors. It may be best to first show the source code that demonstrates this:

Gourd, Kiremire, O'Neal, Blackman 13 Last modified: 03 Mar 2016

Note a few changes. First, the class header has changed from class Dog: to class
Dog(object):. The actual meaning behind this will become clear later in this lesson when we
discuss the concept of inheritance. Second, there are seemingly erroneous statements beginning with
that “@” symbol (e.g., @property and @age.setter). In Python, these tags formally define
decorators. The tag @property defines a decorator (or wrapper) that serves as an accessor, and the tag
@age.setter defines a decorator (or wrapper) that serves as a mutator for a member called age.

Both the accessor and mutator are functions with the same name. In the case above, both are functions
called age. Semantically, they refer to a dog's age. Since the identifier age is now used to refer to the
accessor and mutator, the instance variable that these methods wrap must be renamed. In Python, it is
typical to begin instance variables with an underscore. For example, the instance variable that stores a
dog's age would be called _age.

Let's explain the accessor and mutator, one at a time. First, the accessor:
@property
def age(self):

return self._age

Here, the tag @property defines a decorator that will serve as an accessor for the instance variable
that represents a dog's age. The next statement defines the accessor itself. The function is called age
(and only takes a single parameter, the object). Since the sole purpose of an accessor is to provide read
access to an instance variable, then all that is required is to return its value (via the return keyword).

Gourd, Kiremire, O'Neal, Blackman 14 Last modified: 03 Mar 2016

Since the identifier age is used as the function's name, then the instance variable has been renamed to
_age as noted earlier.

Now, the mutator:
@age.setter
def age(self, age):

if (age >= 0 and age <= 29):
self._age = age

Here, the tag @age.setter defines a decorator that will serve as a mutator for the instance variable
that represents a dog's age. The next statement defines the mutator itself. The function is also called
age (and takes two parameters: the object and the value to change the instance variable to). Since the
purpose of a mutator is to provide write access to an instance variable with input validation, it
appropriately ensures that the provided value is within an acceptable range. If so, the instance variable
_age is changed to reflect the provided input value.

You may have noticed that the decorator for the mutator, @age.setter, contains the name of the
function, age. This must be adhered to when defining a decorator as a mutator. If, for instance, we
wished to provide a mutator for a dog's name, we could use the decorator tag @name.setter, call the
mutator function name, and use the instance variable _name.

Note the following statement in the constructor:
self.age = 0

Be careful! Here, self.age does not refer to an instance variable. It actually refers to the mutator.
This assignment statement effectively calls the mutator, passing in the value on the right-hand side (0) as
the second parameter of the mutator (age). That is, the value 0 is passed in to the mutator, which is
then validated in the mutator. Since it is within the acceptable range (0 through 29), then the instance
variable _age is set to 0.

Gourd, Kiremire, O'Neal, Blackman 15 Last modified: 03 Mar 2016

To illustrate accessors and mutators a bit more, consider the following class that defines a 2D point (with
an x- and y-coordinate):

Although the class for a 2D point is a bit more involved, it only contains two instance variables. The
first, _x, represents the position of the point in the x-direction. The second, _y, represents the position
of the point in the y-direction. Accessors and mutators for each are provided (via the methods called x
for the instance variable _x, and the methods called y for the instance variable _y). In addition, range

Gourd, Kiremire, O'Neal, Blackman 16 Last modified: 03 Mar 2016

checking is performed for both the x- and y-components. Each component may not be less than -10 or
greater than 10. Here is the output of the program:

Notice that the input validation works (i.e., declaring the point p3 at -50,50 results in a point initialized
at -10,10).

To wrap up this section, let's add line numbers to the point class above and trace the program's
execution:

 1: # points must fall within the range (-10,-10) and (10,10)
 2: class Point(object):
 3: def __init__(self, x=0, y=0):
 4: self.x = x
 5: self.y = y

 6: # getter for x
 7: @property
 8: def x(self):
 9: return self._x

10: # setter for x
11: @x.setter
12: def x(self, value):
13: if (value < -10):
14: self._x = -10
15: elif (value > 10):
16: self._x = 10
17: else:
18: self._x = value

19: # getter for y
20: @property
21: def y(self):
22: return self._y

23: # setter for y

Gourd, Kiremire, O'Neal, Blackman 17 Last modified: 03 Mar 2016

24: @y.setter
25: def y(self, value):
26: if (value < -10):
27: self._y = -10
28: elif (value > 10):
29: self._y = 10
30: else:
31: self._y = value

32: p1 = Point()
33: p2 = Point(5, 5)
34: p3 = Point(-50, 50)

35: print "p1=({},{})".format(p1.x, p1.y)
36: print "p2=({},{})".format(p2.x, p2.y)
37: print "p3=({},{})".format(p3.x, p3.y)

In the space below, trace the execution path of the program by listing the lines numbers:

Did you know?

Although some object-oriented languages actually prevent accessing instance variables that are
protected (or wrapped) with accessors and mutators, Python does not enforce this. For example, it is
possible to change the x-component or access the y-component of a point via statements such as:

p1._x = -22
print p1._y

Many Python programmers prefer to change the way they implement classes so that any value that
requires protection is not stored in instance variables. There are other mechanisms that will, in fact,
protect these values. However, this discussion is beyond the scope of this lesson.

Gourd, Kiremire, O'Neal, Blackman 18 Last modified: 03 Mar 2016

Activity 2: Fractions

In this activity, we will create a class that represents a fraction. The first step is to determine what
makes up a fraction (i.e., what it can be – its state). This task is pretty simple! Fractions have a
numerator and a denominator. We can create instance variables for these and also provide accessors and
mutators for each.

We may also want to provide the numeric representation of a fraction. For example, the fraction 1/2 has
the numeric representation 0.5. In Python, simply dividing the numerator by the denominator (i.e., 1/2)
won't produce the anticipated result because it will perform integer division. That is, the expression 1/2
will result in 0 (since 2 goes into 1 exactly 0 times). To produce a floating point result, we must convert
one of the two operands to a floating point value. In Python, we can do this as follows:

float(1) / 2

The expression float(1) converts the integer value 1 into the floating point value 1.0. Generally, the
expression float(x) converts the operand x into a floating point value. Formally, this conversion is
called a typecast, in that the operand's type is cast to a different type.

The expression float(1) / 2 produces the expected result (0.5). In fact, typecasting either operand
works – as shown in the example below:

There are other typecast operators that perform various type conversions. Here are a few of them:
int(x) – converts x to an integer
long(x) – converts x to a long integer
complex(x, y) – creates a complex number; x is the real part, y is the imaginary part
str(x) – converts x to a string

Lastly, we must not allow the denominator of a fraction to ever be 0 (since division by 0 is
mathematically illegal). Therefore, we will need to provide range checking (via if-statements, for
example), to ensure that such an assignment is prevented.

Gourd, Kiremire, O'Neal, Blackman 19 Last modified: 03 Mar 2016

Here's the beginning of the fraction class, along with a brief main program to test the class:

Gourd, Kiremire, O'Neal, Blackman 20 Last modified: 03 Mar 2016

And here's the output:

Note how the class prevents the third fraction from being initialized as 0/0 and, instead, changes it to
0/1.

Did you know?

There is a better way of displaying a fraction than what is show in the example above. Note how we
earlier structured a print statement that built the string representation of a fraction:

print "{}/{} ({})".format(f1.num, f1.den, f1.getReal())

In Python, we can define a built-in magic function that is automatically called when we wish to display
an object. In fact, this built-in function is user-definable and is named using a similar format as the
constructor (i.e., the function begins and ends with two underscores). The function is called __str__
and must return a string representation of the class. So for a fraction, such a function could be
implemented as follows:

def __str__(self):
return "{}/{} ({})".format(self.num, self.den, self.getReal())

Displaying a fraction would then be possible via the following much simpler statement (via syntactic
sugar):

print f1

Gourd, Kiremire, O'Neal, Blackman 21 Last modified: 03 Mar 2016

Adding this function to the fraction class is simple. Here's a snippet of the addition:

Of course, the output is the same as before!

Activity 3: Reducing fractions

You may have noticed that instantiating the fraction 6/8 would work just fine. The problem is that this
fraction is not expressed in lowest terms. That is, it can be reduced (to 3/4). Our fraction class would
greatly benefit from a function that can reduce a fraction. Such a function could be called in the
constructor after setting the numerator and denominator in case it is not in lowest terms.

Although there are many ways to reduce a fraction, here's a simple algorithm that calculates the greatest
common divisor (GCD) among the numerator and denominator. First, initially assume that the GCD is
1. From there, iterate, starting with 2 through the smaller of the numerator or denominator. Each time,
the objective is to try to find a value that evenly divides both the numerator and denominator. As such a
value is found, the GCD is updated. The final step is to divide the numerator and denominator by the
GCD (which reduces the fraction). As a cleanup operation, if the numerator is 0 (i.e., the fraction's
numeric value is 0.0), the denominator is set to 1 (i.e., 0/1).

Gourd, Kiremire, O'Neal, Blackman 22 Last modified: 03 Mar 2016

This is shown in the snippet of code below (which can be placed anywhere in the fraction class):

So where (and when) do we call the reduce function? For the fraction class shown earlier, we would
do so in the constructor as follows:

Gourd, Kiremire, O'Neal, Blackman 23 Last modified: 03 Mar 2016

Activity 4: Adding fractions...and more

Let's now implement the functionality to add two fractions and produce the sum of these as a new
fraction. We must first discuss how two fractions can be added. Typically, the least common
denominator is found. A simpler version, however, is to multiply each fraction by the other's
denominator to obtain a common denominator (that is not necessarily the least common denominator).
Here's an illustration:

a
b
+

c
d

=
a∗d
b∗d

+
b∗c
b∗d

As an example, take the following:

1
2
+

1
4

=
1∗4
2∗4

+
2∗1
2∗4

=
4
8
+

2
8

=
6
8

=
3
4

So now, how do we implement a method in the fraction class that does this? One way is as follows:

This function is called as follows (specifically in the third statement below):
f1 = Fraction(1, 2)
f2 = Fraction(1, 4)
f3 = f1.add(f2)

Note that both fractions are effectively passed in to the add function. The first, f1, represents the
current instance and is mapped to the first parameter, self. The second, f2, is mapped to the second
parameter, other.

The function implements the common denominator method shown above and generates a fraction
representing the sum of self and other. The new fraction is then reduced and returned.

Of course, we could implement functions to subtract, multiply, and divide fractions! In fact, we could
implement a subtract method by using the already defined add method. How? Recall that subtracting is
just adding the negative. Since this will be assigned as a program later, it is left as an individual
exercise for now.

Gourd, Kiremire, O'Neal, Blackman 24 Last modified: 03 Mar 2016

Operator overloading
In the last example above, we defined a function in the fraction class that adds two fractions and returns
the sum. We used this function similar to the following snippet of Python code:

f1 = Fraction(1, 2)
f2 = Fraction(3, 4)
print f1.add(f2)

As expected, the output of these statements is 5/4 (1.25).

The way in which we call the addition function seems a bit tedious. Why can't we just use the addition
operator? For example, why can't we just add two fractions, f1 and f2, by merely using the expression
f1 + f2? This would mean that the following modification of the example above would work as
expected:

f1 = Fraction(1, 2)
f2 = Fraction(3, 4)
print f1 + f2

It turns out that such a thing is possible through a concept called operator overloading. Operator
overloading is the act redefining the behavior of operators (such as addition and subtraction) using their
known symbols (+ for addition, – for subtraction, and so on) in order to support these operations on
user-defined data types. For example, redefining the addition operator for the fraction class could mean
implementing the common denominator method described earlier.

Python has various internal magic functions that support the redefinition of common operators. The
main idea is to encapsulate the new, redefined behavior in a function that is automatically called (using
syntactic sugar) when two objects of the class are used as operands with the specified operator. For the
purpose of the fraction class, we will only consider the four arithmetic operators.

The addition operator (+) can be redefined in a function called __add__ as follows:
def __add__(self, other):

num = (self.num * other.den) + (other.num * self.den)
den = self.den * other.den
sum = Fraction(num, den)
sum.reduce()

return sum

Note that the source code in the new overloaded __add__ function is exactly the same as it was in the
original add function shown earlier.

The subtraction operator (–) can be redefined in a function called __sub__ as follows:
def __sub__(self, other):

...

Note that for this and the remaining operators, the source code is not provided. Instead, appropriate
code is replaced with an ellipsis (…).

Gourd, Kiremire, O'Neal, Blackman 25 Last modified: 03 Mar 2016

The multiplication operator (*) can be redefined in a function called __mul__ as follows:
def __mul__(self, other):

...

Lastly, The division operator (/) can be redefined in a function called __div__ as follows:
def __div__(self, other):

...

The fraction class has now grown! Take a look:

Gourd, Kiremire, O'Neal, Blackman 26 Last modified: 03 Mar 2016

In fact, we can now perform all of the implemented arithmetic operations on fractions. Here's a snippet
of Python code that tests the fraction class and assumes that the operator overload functions have been
fully implemented:

And here is the output:

Class diagrams
In computer science courses, you are often asked to design simple programs. The ability to understand
and hold everything in one's head when solving a simple problem is relatively straightforward and, well,
usually pretty simple. However, when solving complicated problems and developing solutions to these
problems as large and tedious applications, it becomes quite difficult to manage all of the parts and
pieces. Often, we require the use of tools and techniques that incorporate visual aids and diagrams to
assist us in managing the structure and components of these applications.

A class diagram is a type of diagram that describes the structure of a program by visualizing its classes,
their state and behavior, and their relationships. The most simple class diagram only shows the classes
of a program, which are represented as rectangles.

Gourd, Kiremire, O'Neal, Blackman 27 Last modified: 03 Mar 2016

To illustrate how a class diagram could be used to model an application's structure, let's consider one
that models vehicle traffic in a large city for the purpose of analyzing how it manages traffic during rush
hour. This kind of application would be useful in learning about traffic patterns, congestion, and so on.
In fact, it could help to redesign roads, entrances to and exits from highways and interstates, the
placement and timing of traffic signals, etc. Such an application may include classes for cars, pickup
trucks, buses, tractor trailers, motorcycles, and so on, since all of these things contribute to the traffic in
a city. In fact, the application could be modeled with a class diagram as follows:

The classes of an application are always singular nouns. Since a class is a blueprint for objects, then a
class is essentially like a rubber stamp. For example, we can define a class that describes the blueprint
for a car. This class would be considered the car class and be formally called Car. As mentioned
earlier, the names of classes are typically capitalized. Since they are identifiers, they also must not
contain spaces and abide by all of the rules for naming identifiers in the programming language. In
Python, the car class could be defined as follows:

class Car:
...

Instances of the car class would collectively be called cars (and there could be many of them).
Similarly, the class for a pickup truck could be called PickupTruck, and would be defined in Python as
follows:

class PickupTruck:
...

The beauty of a class diagram is that it allows us to very easily see the components of a system or
application. In the class diagram above, there is no indication of the state and behavior of classes, nor is
there any indication of any relationships between classes. We will get to this later.

Inheritance
As you know, the object-oriented paradigm attempts to mimic the real world, particularly in how it is
made up of objects that interact with each other. In the real world, objects also have relationships, and
this is useful! For example, a person inherits traits from parents. Specifically, a person inherits physical
traits (e.g., height, hair color, etc) and behavioral traits (e.g., manner of speaking). This behavior is
represented in the object-oriented paradigm as well.

Gourd, Kiremire, O'Neal, Blackman 28 Last modified: 03 Mar 2016

Car PickupTruck

Bus

TractorTrailer Motorcycle

To illustrate how this is done, let's consider the application that models vehicle traffic described earlier.
Let's begin with the car class that serves as the blueprint for a car in the traffic simulation. What might
its state and behavior look like? That is, what are cars made up of? What can they be, and what can
they do? Very quickly, we can think of attributes such as year, make, model, mileage, and so on. This
represents the state of a car. We can also think of behaviors such as start, move, turn, park, and so on.
In fact, we could quickly design a car class now that we know how to do so in Python!

Now let's consider a pickup truck class that serves as the blueprint for a pickup truck in the traffic
simulation. Its state would most likely be very similar to that of the car class. And so would its
behavior. In fact, not much differentiates a car from a pickup truck. They both generally have the same
attributes and do the same thing. Imagine designing the classes for a car a pickup truck. You may think
that the classes would share many similarities in both state and behavior (and you would be right).

Now imagine maintaining such an application. Suppose that the implementation of some behavior that
is similar across cars and pickup trucks needs to be modified. This would require changing both the car
and pickup truck classes because code is duplicated across the two classes. Dealing with this type of
thing increases the likelihood of bugs. The beauty of the object-oriented paradigm is that it allows the
inheritance of state and behavior from class-to-class, just like we inherit traits from our ancestors!

The state and behavior that is shared among the car and pickup truck classes in the traffic simulation
application could be captured in a more general class. Such a class could, for example, be called a
Vehicle. All of the state and behavior that is shared among any type of vehicle would be defined in this
class. Specific kinds of vehicles (like cars and pickup trucks) would then inherit these traits. Any
modifications to the state and behavior of vehicles of all types could be made in the vehicle class and be
automatically applied to all types of vehicles!

In fact, let's amend the class diagram shown earlier by including a vehicle class that defines the overall
state and behavior that all types of vehicles (cars, pickup trucks, buses, tractor trailers, and motorcycles)
share:

Note how all of the classes that inherit state and behavior from the vehicle class now have solid arrows
pointing toward the vehicle class. In a class diagram, this indicates an inheritance relationship.
Specifically, the car, pickup truck, and other classes shown at the bottom of the class diagram inherit
state and behavior from the vehicle class. A class that defines state and behavior that is inherited by
other classes is called a superclass. The classes that inherit from it are called subclasses. In the class
diagram above, the class Vehicle is a superclass of the class Car, and the class Car is a subclass of the
class Vehicle.

Gourd, Kiremire, O'Neal, Blackman 29 Last modified: 03 Mar 2016

Car PickupTruck Bus TractorTrailer Motorcycle

Vehicle

The inheritance relationship is often called the is-a relationship. This is actually quite clear from the
class diagram: a Car is a Vehicle, a Bus is a Vehicle, and so on. There is also the has-a relationship.
This represents a composition relationship and refers to the state of an object. Specifically, we often
note the has-a relationship in class diagrams for classes that contain other classes.

In terms of how this is accomplished in Python source code, we merely need to specify the superclass
in a subclass' class definition. For example, consider the class Car (which is a subclass of the superclass
Vehicle). To note this relationship in Python, we merely need to define the Car class as follows:

class Car(Vehicle):
...

This establishes the relationship that the class Car is a subclass of the class Vehicle, and that the class
Vehicle is a superclass of the class Car.

Next, consider an engine class that defines everything that an engine can be and do. Clearly, a car has an
engine. So does a pickup truck, a bus, a motorcycle, and so on. In general, all of these vehicles have an
engine. Since all vehicles have an engine, in the design of the application we may include the engine
class as part of the state of the vehicle class. Specifically, we would include an instance of the engine
class in the vehicle class. All subclasses of the vehicle class would then inherit this attribute. We note
the has-a relationship in a class diagram with a dashed arrow that point toward the composed class.
Here is an amended class diagram that now includes the engine class:

This important relationship illustrates that objects can, in fact, create other objects! In the example
above, a vehicle can create an instance of an engine. Although the state and behavior of all vehicles is
defined in the vehicle class, nothing stops any of its subclasses from redefining or specializing these
attributes or behaviors. That is, although a car and a motorcycle both have an engine, they are quite
different. Simply because the engine class is included in the vehicle class does not prevent a car or a
motorcycle from specializing the engine and uniquely setting its state.

Let's further illustrate the concept of inheritance by expanding the world of vehicles. In this expanded
world, there are two types of vehicles: land vehicles (that move on land) and air vehicles (that fly in the
air). The types of land vehicles that exist include all of the vehicles described earlier (e.g., cars, pickup
trucks, etc), and the types of air vehicles that exist include airplanes, helicopters, and ultralights. While
we're at it, let's define multiple types of engines for land vehicles (e.g., V-6, V-8, and I-6), and multiple
types of engines for air vehicles (e.g., turbo prop and jet engine).

Gourd, Kiremire, O'Neal, Blackman 30 Last modified: 03 Mar 2016

Car PickupTruck Bus TractorTrailer Motorcycle

Vehicle Engine

Try to represent this expanded world with a class diagram in the space below:

Gourd, Kiremire, O'Neal, Blackman 31 Last modified: 03 Mar 2016

Often, we include the state and behavior of classes in the class diagram. Suppose that the class
LandVehicle has the instance variables year, make, and model, and the functions start, stop,
and turn. The class diagram for this single class would be extended as follows:

Typically, we include the types of instance variables and adhere to the following format:
variable_name : variable_type

For functions, we include the names and types of any parameters and adhere to the following format:
function_name(parameter1_name : parameter1_type, …)

You have probably noticed that this extension of class diagrams makes it quite easy to implement the
source code for the class!

The object class
The inheritance relationship is easily implemented in Python classes in the class header. Earlier, when
discussing accessors and mutators (with the dog class), we noted that the class definition must include
what you now know to be an inheritance relationship with a class called object. In fact, here was the
class header for the dog class:

class Dog(object):
...

Formally, the class object is defined to be the ultimate superclass for all built-in (i.e., user-defined)
types. As shown, it is possible to have multiple levels of inheritance (e.g., the class Car is a subclass of
the class LandVehicle which is a subclass of the class Vehicle). At the top of this inheritance hierarchy
lies the object class. Although it is not strictly necessary, the class header for the vehicle class can be:

class Vehicle(object):
...

Gourd, Kiremire, O'Neal, Blackman 32 Last modified: 03 Mar 2016

LandVehicle

year : integer
make : string
model : string

start()
stop()
turn(direction : string)

To support the syntactic sugar method of implementing accessors and mutators, an inheritance
relationship must be specified. For the dog class, we needed to specify the object class as its superclass.
In the case of the class Car, for example, it already inherits from the class LandVehicle. This is
sufficient to support accessors and mutators using syntactic sugar. To better illustrate this, let's consider
the following class diagram:

From this class diagram, we can quickly begin laying out the source code for the classes. In fact, the
class headers can be directly inferred from the class diagram:

class Vehicle(object):
…

class DodgeRam(Vehicle):
…

class Engine(object):
...

Gourd, Kiremire, O'Neal, Blackman 33 Last modified: 03 Mar 2016

Vehicle

year : integer
make : string
model : string
engine : Engine

Engine

kind : string

DodgeRam

name : string

Since the class diagram includes the state of each class, declaring instance variables in the constructors
of each class and providing appropriate accessors and mutators is also relatively straightforward. In
fact, here's the entire Vehicle class:

Gourd, Kiremire, O'Neal, Blackman 34 Last modified: 03 Mar 2016

The constructor includes parameters for a vehicle's year, make, and model. By default, a vehicle's
engine is undefined (i.e., None). The class contains getters and setters for each of the instance
variables. Finally, the __str__ function defines how to represent a vehicle as a string, which is in the
following format (with an example for clarity):

Year: 2016
Make: Dodge
Model: Ram
Engine: V6

Here is the entire Engine class:

The Engine class has a single instance variable (its kind). Its constructor includes one parameter for the
kind of engine (None by default). A getter and setter is provided for the instance variable. The string
representation of an engine is just its kind.

Gourd, Kiremire, O'Neal, Blackman 35 Last modified: 03 Mar 2016

Lastly, here is the DodgeRam class:

The DodgeRam class has a single instance variable (its name). Its constructor takes two parameters (for
a DodgeRam's name and year). Note that the class contains two class variables that are shared among
all instances of the class: make and model. This makes sense, because all instances of the class
DodgeRam are Dodge Rams! That is, their make is Dodge, and their model is Ram.

There are two more interesting (and new) things in the class DodgeRam. Take a look at the first
statement in the constructor:

Vehicle.__init__(self, year, DodgeRam.make, DodgeRam.model)

When implementing inheritance relationships, it often becomes useful and sometimes necessary to
invoke or call functions in a subclass' superclass. Formally, state and behavior that are defined in the
superclass are inherited in a subclass. They can be redefined in the subclass; however, they don't
necessarily need to be. In fact, a subclass may inherit a function and need to implement the inherited
behavior first. This is accomplished by calling the function in the superclass. Since the current object
(self) is not an instance of the superclass, then invoking a function in the superclass is done by using the
superclass' name. So the first part of the statement, Vehicle.__init__, means to call the
constructor in the Vehicle class (the superclass of the DodgeRam class).

In this case, the year, make, and model are passed as parameters to the constructor in the Vehicle class.
This effectively sets up the appropriate instance variables in the Vehicle class (which are inherited in the
DodgeRam class). Subsequently, the constructor in the DodgeRam class then initializes its only
instance variable, name.

Gourd, Kiremire, O'Neal, Blackman 36 Last modified: 03 Mar 2016

Did you know?

There is another way of referring to a superclass by using a built-in function called super. This
function takes two parameters: the name of the subclass and the instance of the subclass, self. For
example, in the subclass DodgeRam, referring to the superclass Vehicle could be accomplished as
follows:

super(DodgeRam, self)

To then invoke a function in the superclass, we simply append the function name and any parameters
(other than self) to the super function; for example:

super(DodgeRam, self).__init__(year, DodgeRam.make, DodgeRam.model)

Note that this applies to Python version 2.7.x. An updated syntax is provided in Python version 3 that is
beyond the scope of this lesson.

Another new thing in the class is the statement in the __str__ function:
return "Name: {}\n{}".format(self.name, Vehicle.__str__(self))

The string representation of a DodgeRam is its name, followed by the string representation of a Vehicle
(which was illustrated earlier). The latter part of the statement calls the __str__ function in the
Vehicle class:

Vehicle.__str__(self)

Again, this illustrates a call to a function in the superclass. This call returns the string representation of a
vehicle – which is displayed below the name of the DodgeRam; for example:

Name: Boss Hog
Year: 2016
Make: Dodge
Model: Ram
Engine: V6

So the string representation of a DodgeRam is simply its name, followed by the inherited string
representation of a Vehicle.

Why inheritance?
There are clear benefits to using inheritance in our programs. In a sense, it makes the reasoning of an
application more possible since it attempts to mimic the world that we live in. But it also reduces code
duplication, because similarities between objects can be encapsulated in superclasses. This has the
downstream effect of promoting the reuse of code, and intrinsically makes code maintenance much
easier. In fact, we often say that if software is not maintained, it dies! So we maintain software often. It
behooves us to make this process easier.

Lastly, inheritance makes applications easier to extend. Think of adding a different type of vehicle (say,
a HondaCivic). Without inheritance, we would have to include instance variables for year, make,
model, and so on. However, these are already defined in the Vehicle class! We simply need to define
the class HondaCivic as a subclass of the class Vehicle in order to inherit its state and behavior:

class HondaCivic(Vehicle):
...

Gourd, Kiremire, O'Neal, Blackman 37 Last modified: 03 Mar 2016

Single inheritance vs multiple inheritance
The inheritance relationship that has been discussed thus far is known as single inheritance. That is, a
subclass inherits state and behavior from a single superclass. Most object-oriented programming
languages support single inheritance. Often, however, there is a need to support multiple inheritance,
where a subclass can inherit from more than one superclass.

To illustrate this, consider a grocery store's items. A banana, for example, is a fruit. Therefore, it may
inherit traits from a fruit superclass such as type, country of origin, etc. However, in the context of a
grocery store, a banana is also an item for sale. Such a sale item has a price, an inventory, a shelf
location, etc. Inheriting from both a Fruit superclass and a SaleItem superclass, for example, would be
useful in implementing the point-of-sale system for a grocery store.

Most object-oriented programming languages do not support multiple inheritance. Some do, but only in
a limited form. Java, for example, supports it in a limited form by utilizing something known as an
interface. The technical details of this are beyond the scope of this lesson. Python, however, directly
supports multiple inheritance. One must merely list all of a subclass' superclasses in the class header;
for example:

class Banana(Fruit, SaleItem):
...

OO quick reference
We have covered a lot of new terms in this lesson. This final section merely aggregates them all, along
with their definition, so that you can easily and quickly refer to the terms should you need to.

Term Definition

accessor A special method in a class that wraps an instance variable for the purpose of
providing read access.

behavior All of the things that an object can do; implemented using functions in the
class.

class A blueprint for a thing; the definition of state and behavior for an entire class
of things.

class diagram A diagram that models the classes of a system or application, their
relationships, and their members.

class variable A variable that is defined at the class level; its value is shared among all
instances of the class.

constructor A special method in a class that is automatically invoked when a new instance
of the class is instantiated; usually performs initialization tasks (e.g., assigning
default or specified values to the instance variables).

decorator A wrapper; in Python, accessors and mutators are wrapped using a decorator.

dot operator When used on an object reference, accessed the specified member of the class.

has-a A relationship among classes that implies one class making use of another; also
means the ability of an object to create other objects.

inheritance A relationship among classes that permits a class to inherit the state and

Gourd, Kiremire, O'Neal, Blackman 38 Last modified: 03 Mar 2016

behavior of another class; see is-a.

input validation The process of validating a provided input to ensure that it conforms to some
expected range or type.

instance An object that represents the instantiation of a class.

instance variable A variable defined in a method of a class (usually the constructor) that allows
individual instances of the class to uniquely set values to.

instantiate The process of constructing a new instance of a class.

is-a A relationship among classes that permits a class to inherit the state and
behavior of another class; see inheritance.

magic function A special function in Python whose name begins and ends with two
underscores (e.g., __init__, __str__, __add__).

member How we collectively reference the state and behavior of a class.

method How behavior is implemented in a class; they are functions that describe what
an object can do.

multiple inheritance The ability of a class to inherit the state and behavior of multiple classes
simultaneously.

mutator A special method in a class that wraps an instance variable for the purpose of
providing write access; usually implements input validation.

object An instance of a class, with specific values assigned to instance variables.

object class The base class for all user-defined objects; the top-most superclass.

object reference A variable name that refers to an object.

operator overloading The redefining of an operator (e.g., the addition operator) on user-defined
objects.

single inheritance The ability of a class to inherit the state and behavior of a single class.

state All of the things that an object can be; implemented using instance variables in
the class.

subclass A class that inherits state and behavior from another class.

superclass A class that another class inherits state and behavior from.

typecast The process of converting a value from one type to another (e.g., converting an
integer to a floating point number).

Gourd, Kiremire, O'Neal, Blackman 39 Last modified: 03 Mar 2016

