
The Science of Computing I Living with Cyber

Lesson 3: Introduction to Computer Programming Pillar: Computer Programming

In previous lessons, we have covered the pseudocode for multiple algorithms (e.g., searching and
sorting). This lesson explores how to translate that pseudocode into actual code that a computer can
understand and execute.

Machine language

Definition: Machine language is a set of specific instructions that can be executed directly by a
computer. This language is typically made up of binary digits (1s and 0s).

A computer can only understand machine language. Machine language instructions are entirely made up
of binary digits and can be directly executed by the CPU. Since we have a particularly hard time
understanding 1s and 0s, early programmers assigned a set of mnemonics to represent machine code
instructions so that they would be a bit more readable. This mapping became known as assembly
language. People still write code in assembly language, but it is not typically used to create large scale
applications.

Programming language
The kinds of languages that are widely used today are known as programming languages. Programming
languages allow us to represent algorithms in a way that is similar to English but is more structured and
much less ambiguous.

Definition: A programming language is a precisely constructed language that is specifically used to
communicate instructions to a computer.

English is a spoken language. As such, it was spoken first, rules were later defined and written down.
Therefore, there are many exceptions (i.e., words and phrases that are grammatically correct but don't
conform to the general grammar/spelling rules). Spoken languages are sometimes ambiguous and open
to interpretation. This means that a single statement can have multiple meanings. For example, the
statement “I made the robot fast” can mean several different things. Does it mean that the robot was
built quickly? Or does it mean that the robot was modified so that it would move around more quickly
than it did before? Perhaps it means that the robot is named Fast. Or maybe that we managed to make
the robot stop eating nuts and bolts.

Humans rely on external factors like context and body language to understand the true meaning of a
statement in a spoken language. And even then mistakes in interpretation still happen. With computers
however, we need a language that is so structured and unambiguous that every computer can understand
and interpret a given statement in the exact same way. For example, we don't want two different
computers giving us two completely different answers to the arithmetic expression 1 + 1.

In contrast to spoken languages, programming languages are first defined with rules. The language itself
is then derived form those rules. Programming languages are therefore quite structured and not
ambiguous. They are very precise and logical.

There are many different programming languages that can be used to describe an algorithm. One of
them is called Scratch, and it is what we will be using for a part of the Living with Cyber curriculum. It

Gourd, Kiremire, O'Neal 1 Last modified: 21 Oct 2015

is the duty of the programmer to write down the tasks that he/she wants done in a given programming
language. Since computers can only understand machine language, we utilize an application known as a
compiler that translates this programming language into machine language.

Definition: A compiler is a tool used to translate an algorithm expressed in a programming language to
machine language. The process by which this conversion from programming language to machine
language is done is called compilation.

The compilation process takes an algorithm written in a programming language and translates it to
assembly language. From there, a process known as linking converts the assembly language to machine
language. This is illustrated by the figure below:

Once machine language is generated to match a program, the computer can then directly execute the
program and implement the algorithm. A fully compiled language is only executable by a CPU with the
same characteristics and operating system (often, including version) as that which it was compiled for.
A programmer who wants wide distribution of his software will need to compile source code to the
various destination computing architectures and operating systems that are the most likely to be used by
the target audience for the application. Of course, the programmer could simply distribute source code
and let users compile that themselves. Often, however, programmers do not wish to distribute source
code for a variety of reasons (e.g., intellectual property). The figure below shows how a program would
need to be compiled numerous times to cover a range of target computing architectures and operating
systems:

Gourd, Kiremire, O'Neal 2 Last modified: 21 Oct 2015

Source code
(programming

language)

Assembly
language

Machine
language

compilation linking

Not all programming languages are compiled to machine language. Some are never compiled and are
executed, one instruction at a time, by an interpreter. An interpreter can be thought of as a real time
compiler that executes high level programming language instructions, one at a time. Interpreted
languages are much slower to execute than compiled languages. Examples of interpreted languages are
Python, PHP, JavaScript, and Perl. To execute a program written in an interpreted language, you must
have an appropriate interpreter installed on your computing system.

Interpreted languages also require programmers to distribute their source code, and users to have an
appropriate interpreter installed on their system. Maintaining code privacy is therefore not possible with
interpreted languages.

Partially compiled and interpreted languages combine the convenience of interpreted languages (i.e., not
having to compile source code to a large number of target machine language executables) and the
privacy and speed of compiled languages (i.e., not having to distribute source code). These types of
programming languages are partially compiled (to an intermediate language) and then interpreted from
there. Examples of partially compiled languages are Java, Python, and Lisp. Note that Python can be
strictly interpreted or partially compiled depending on the programmer's preferences. The intermediate
language is distributed and subsequently executed on any computing platform that has an interpreter for
the intermediate language. For example, Java source code is typically expressed in a .java file and

Gourd, Kiremire, O'Neal 3 Last modified: 21 Oct 2015

Source code

Executable
(Windows 32-bit)

Executable
(Windows 64-bit)

Executable
(Linux 32-bit)

Executable
(Linux 64-bit)

Executable
(Mac)

...

partially compiled to Java bytecodes (in a .class file) that can then be distributed. A Java Virtual
Machine (JVM) executes the bytecodes by interpreting each instruction, one at a time. The benefit of
this method is that a programmer can distribute a single file to everyone, regardless of CPU architecture
and operating system. Anyone wanting to execute the file simply needs to have a version of the JVM for
their computing system. this is illustrated in the figure below:

Programming paradigms
Over the past forty years or so, three general classes, or paradigms, of programming languages have
emerged. These paradigms include the imperative paradigm, the functional paradigm, and the logical
paradigm. In addition, during the past decade or so these paradigms have been extended to include
object-oriented features. A language is classified as belonging to a particular paradigm based on the
programming features it supports.

Object-oriented imperative languages are, by far, the most popular type of programming language. Both
Java and C++ (two of the most used programming languages in industry) are object-oriented imperative
languages. Scratch and Python are imperative languages – although Python does contains object-
oriented attributes, Scratch does not.

Gourd, Kiremire, O'Neal 4 Last modified: 21 Oct 2015

Source code
Intermediate
bytecodes

Interpreter
(Windows 32-bit)

Interpreter
(Windows 64-bit)

Interpreter
(Linux 32-bit)

Interpreter
(Linux 64-bit)

Interpreter
(Mac)

...

The imperative paradigm is based on the idea that a program is sequence of commands or instructions
(usually called statements) that the computer is to follow to complete a task. The imperative style of
programming is the oldest, and now with object-oriented extensions, continues to be far and away the
most popular style of programming.

The Living with Cyber curriculum first utilizes Scratch as the programming language. This is quickly
followed by Python. Scratch is not intended to be used to create applications designed for production
systems. Instead, it is a teaching tool aimed at simplifying the process of learning to program. Scratch
purposefully omits many features available in other popular programming languages in order to keep the
language from becoming overly complex. This allows you to focus on the big picture rather than get
bogged down in the complexities inherent in real programming languages and their development
environments.

One way of thinking about writing Scratch programs is to compare it to programming in a production
programming language with training wheels on. Complex and useful programs can be written in
Scratch; however, there are many things that programmers are allowed to do in production languages
that are not possible (at least not straightforward) in Scratch. For example, Scratch does not support
functions and function calls directly, nor does it support recursion directly. These terms may not be
familiar right now; however, these restrictions are designed to help beginning programmers avoid
making common mistakes.

Scratch
Scratch is a basic programming language that utilizes puzzle pieces to represent the properties in the
language (e.g., sequence, selection, and repetition). The programmer decides what pieces to use in order
to implement the algorithm, and the puzzle pieces help identify what actions or statements can fit with
each other and in what order they will be executed. More robust languages such as Python are entirely
text-based where statements are text instructions used to represent actions.

In real physical puzzles, certain pieces have meaning and can only be used in certain places (e.g., edge
pieces and corner pieces). This is similar in Scratch, in that certain pieces have meaning and must be
used in certain places in our programs. Some of a puzzle's pieces can only be combined with certain
other pieces so that they make sense.

Scratch programs consist of scripts and is sprite driven. That is, a set of scripts can be defined for each
sprite in a Scratch program (which we can more appropriately call a project). Scripts that are executed
when the green flag is clicked can be defined for each sprite, and these scripts will execute
simultaneously for each sprite! Sprites can communicate by way of broadcasting messages that can be
received by other sprites. This is, in a way, a characteristic of object-oriented programming languages,
where objects can communicate with each other by sending messages.

As covered in a previous lesson, Scratch scripts are made up of various puzzle pieces (or blocks) that
serve various functions. Blocks in the motion group provide programming constructs that deal with the
movement or placement of sprites, while blocks in the looks group control anything related to the
appearance of sprites (e.g., costume, graphical effect). Sound blocks provide the ability to incorporate
sound in our Scratch programs, and pen blocks allow us to draw on the stage. Control blocks provide
some of the most powerful functionality in Scratch. They allow us to implement selection and repetition
quite easily, and in a variety of useful ways. They also provide ways to allow communication among
sprites and to specify scripts to perform when events occur (e.g., when the green flag is clicked). Blocks
in the sensing group provide ways of specifying input to our programs. We can, for example, detect if a

Gourd, Kiremire, O'Neal 5 Last modified: 21 Oct 2015

sprite is touching another (and then specify some sort of action if desired). Blocks in the operators
group provide math and string functions, something quite useful in our programs. These blocks allow us
to compare values in order to determine an action to perform. Lastly, blocks in the variables group
permit us to define variables and lists (i.e., a group of values). This is useful in virtually all programs,
and you will find that declaring variables will become pretty routine.

Data types, constants, and variables
The kinds of values that can be expressed in a programming language are known as its data types.
Scratch supports only two data types: text and numbers. The text data type provides the ability to
represent non-numeric data such as names, addresses, English phrases, etc. The numeric data type
allows the language to manipulate numbers, both positive and negative, whole numbers and fractions.

A constant is defined as a value of a particular type that does not change over time. Both numbers and
text may be expressed as constants in Scratch. Numeric constants are composed of the digits 0 through
9 and, optionally, a negative sign (for negative numbers), and a decimal point (for floating point
numbers). Numeric constants may not contain commas, dollar signs, or any other special symbols. The
following are valid Scratch numeric constants: +15, -150, 15.01, 3200.

A text constant consists of a sequence of characters (also known as a string of characters – or just a
string). The following are examples of valid string constants:

“She turned me into a newt.”
“I got better.”
“Very small rocks.”

Note that the quotes surrounding the strings are not actually necessary to define a text constant in
Scratch.

A variable is defined to be a named object that can store a value of a particular type. Scratch supports
two types of variables: text variables and numeric variables. Before a variable can be used, its name
must be declared. In many programming languages, both its name and type must be declared; however,
Scratch only requires a variable's name to be declared. Variables are declared in Scratch through the
variables blocks group.

It is important to realize that, while human programmers generally try to give variables names that
reflect the use to which they will be put, the variable name itself doesn’t mean anything to the computer.
For example, the numeric variable age can be used to hold any number, not just an age. It is perfectly
legal for age to hold the number of students in a class or the number of eggs in your refrigerator. The
computer couldn’t care less. Human programmers, on the other hand, generally care a great deal. They
expect a variable’s name to accurately reflect its purpose; so while it is possible to do so, it would be
considered poor programming practice to use the variable age to store anything other than an age.

Input and output statements
In order for a computer program to perform any useful work, it must be able to communicate with the
outside world. The process of communicating with the outside world is known as input/output (or I/O).
Scratch includes various input and output statements, although they are not implemented in the same
way as other real programming languages such as Python or Java.

For example, in Scratch, individual sprites can say something for n secs or think something for n secs,
displaying voice or thought bubbles with text. These are located in the motion blocks group. Sprites can

Gourd, Kiremire, O'Neal 6 Last modified: 21 Oct 2015

also switch costumes, and programs can play sounds, draw with the pen, and so on. These are all output
statements. Input statements include sensing when sprites are touching (or near) other sprites, or at the
edge of the stage. Scratch can also ask the user for input (either text or numeric), and store this input to
a variable. Many input statements in Scratch are located in the sensing blocks group. Most imperative
languages include mechanisms for performing other kinds of I/O such as detecting where the mouse is
pointing and accessing the contents of a disk drive.

The flexibility and power that input statements give programming languages cannot be overstated.
Without them the only way to get a program to change its output would be to modify the program code
itself, which is something that a typical user cannot be expected to do.

General-purpose programming languages allow human programmers to construct programs that do
amazing things. When attempting to understand what a program does, however, it is vitally important to
always keep in mind that the computer does not comprehend the meaning of the character strings it
manipulates or the significance of the calculations it performs. Take, for example, the following simple
Scratch program:

This program simply displays strings of characters, stores user input, and echoes that input back to the
screen along with some additional character strings. The computer has no clue what the text string
“Please enter your name.” means. For all it cares, the string could have been “My hovercraft is full of
eels.” or “qwerty uiop asdf ghjkl;” (or any other text string for that matter). Its only concern is to copy
the characters of the text string onto the display screen.

Only in the minds of human beings do the sequence of characters “Please enter your name.” take on
meaning. If this seems odd, try to remember that comprehension does not even occur in the minds of all
humans, only those who are capable of reading and understanding written English. A four year old, for
example, would not know how to respond to this prompt because he or she would be unable to read it.
This is so despite the fact that if you were to ask the child his or her name, he or she could immediately
respond and perhaps even type it out on the keyboard for you.

Consider this Scratch program:

Here, input is numeric instead of text. The program prompts the user for two numbers, which it then
computes the sum for and displays to the user. Note that two variables were declared in the variables

Gourd, Kiremire, O'Neal 7 Last modified: 21 Oct 2015

blocks group: num1 and num2. The first number is captured and stored in the variable num1. The
second number is captured and stored in the variable num2. What do you think would happen is the
user did not provide numeric input and, for example, inputted “Bob” for the first number? In the real
world, programmers must create robust programs that examine user input in order to verify that it is of
the proper type before processing that input. If the input is found to be in error, the program must take
appropriate corrective action, such as rejecting the invalid input and requesting the user try again.

Primary control constructs
What makes computers more than simple calculating devices is their ability to respond in different ways
to different situations. In order to create programs capable of solving more complex tasks we need to
examine how the basic instructions we have studied can be organized into higher-level constructs. The
vast majority of imperative programming languages support three types of control constructs which are
used to group individual statements together and specify the conditions under which they will be
executed. These control constructs are: sequence, selection, and repetition.

Sequence requires that the individual statements of a program be executed one after another, in the order
that they appear in the program. Sequence is defined implicitly by the physical order of the statements.
It does not require an explicit program structure. This is related to our previous discussion on control
flow.

Selection constructs contain one or more blocks of statements and specify the conditions under which
the blocks should be executed. Basically, selection allows a human programmer to include within a
program one or more blocks of optional code along with some tests that the program can use to
determine which one of the blocks to perform. Selection allows imperative programs to choose which
particular set of actions to perform, based on the conditions that exist at the time the construct is
encountered during program execution.

Repetition constructs contain exactly one block of statements together with a mechanism for repeating
the statements within the block some number of times. There are two major types of repetition: iteration
and recursion. Iteration, which is usually implemented directly in a programming language as an
explicit program structure, often involves repeating a block of statements either (1) while some
condition is true or (2) some fixed number of times. Recursion involves a subprogram (e.g., a function)
that makes reference to itself. As with sequence, recursion does not normally have an explicit program
construct associated with it.

Sequence
Sequence is the most basic control construct. It is the glue that holds the individual statements of a
program together. Yet, when students who are new to programming try to understand how a particular
program works, they often just glance over the various statements making up the program to get a feel
for what it does rather than methodically tracing through the sequence of actions it performs. One
reason such an approach is tempting is because students tend to believe they can figure out what a
program is supposed to do based on contextual clues such as the meaning of variable names and
character strings.

While it is often possible to gain a superficial knowledge of a program simply by reading it, this
approach will not give you the kind of detailed understanding that is frequently required to accurately
predict a program’s output. Being able to carefully trace through a program to determine exactly what it
does is an important skill. Failure to carefully follow the sequence of instructions often leads to
confusion when trying to understand the behavior of a program.

Gourd, Kiremire, O'Neal 8 Last modified: 21 Oct 2015

The following program illustrates the importance of sequence. It contains a little do nothing program
that displays the value 16. What makes this program interesting is not so much what its output is, as the
way in which that output is computed. Without carefully tracing through the program, one statement at
a time, it would be difficult to correctly predict the final output generated by the program.

Note that the variables x, y, and z were declared in the variables blocks group. The following illustrates
the state of the program's memory after executing each line of code. After performing the first
declaration, the program knows only about the variable x. After the second declaration, it knows of x
and y, and after the third, it knows of x, y, and z. Since these variables have not yet been assigned
values, their values are considered to be undefined at this point.

declaring x x

declaring y x y

declaring z x y z

set x to 5 x 5 y z

change x by 1 x 6 y z

set y to 3 x 6 y 3 z

set z to x + y x 6 y 3 z 9

set y to y – 2 x 6 y 1 z 9

say x + y + z for 2 secs x 6 y 1 z 9

Program output: 16

Selection
Selection statements give imperative languages the ability to make choices based on the results of
certain condition tests. These condition tests take the form of Boolean expressions, which are
expressions that evaluate to either true or false. There are various types of Boolean expressions, but the
types supported in Scratch are based on relational operators. Relational operators compare two
expressions of like type to determine whether their values satisfy some criterion. The general form of all
Boolean expressions supported in Scratch is:

Gourd, Kiremire, O'Neal 9 Last modified: 21 Oct 2015

expression relational_operator expression

For example:

Scratch includes three relational operators for comparing numeric expressions:
< meaning less than
= meaning equal to
> meaning greater than

For example, when x is 15 and y is 25, the expression x > y evaluates to false, since 15 is not greater
than 25. Here are some additional examples of Boolean expressions that use these relational operators.
These examples assume that the variable x holds 15 and y holds 25:

true 15 > 25 – 20

true 15 + 10 = 25

false 15 = 15 + 1

Notice that the last expression always evaluates to false regardless of the value of x. This is because
there is no possible value for x that will be equal to that value plus one. Another point illustrated by
these examples is that relational operators have a lower precedence than mathematical operators.
During expression evaluation, all multiplication, division, addition, and subtraction operations are
performed before any relational operations.

The relational operators also work for text expressions as follows:
< meaning precedes
= meaning equal to
> meaning follows

Note that Scratch does not differentiate between uppercase and lowercase letters. That is, A is equal to
a. Here are some examples, assuming that the variable x holds Bob and y holds bobcat:

false Bob = bobcat

false Bob > bobcat

true Bob < bobcat

Since Bob precedes bobcat in alphabetical order, Bob < bobcat is true.

Selection statements use the results of Boolean expressions to choose which sequence of actions to
perform next. Scratch supports two different selection statements: if-else and if. An if-else statement
allows a program to make a two-way choice based on the result of a Boolean expression. The general
form of an if-else statements is shown below:

Gourd, Kiremire, O'Neal 10 Last modified: 21 Oct 2015

← statements to be executed if the expression is true

← statements to be executed if the expression is false

If-else statements specify a Boolean expression and two separate blocks of code: one that is to be
executed if the expression is true, the other to be executed if the expression is false. Here's a flowchart
for an if-else statement:

Gourd, Kiremire, O'Neal 11 Last modified: 21 Oct 2015

Boolean
expression

Statements to be
executed if

expression is true

Statements to be
executed if

expression is false

And here's an example of a program that implements an if-else statement (several, actually):

This program prompts the user to enter a name and age, and responds appropriately. It compares the
user's age to several constants (40, 30, and 20), and sets the variable phrase depending on the user's age.
If the user's age is more than 40, then the program responds that the user is pretty old; otherwise, the
program then checks to see if the user's age is more than 30. If so, the program responds that the user is
not too old; otherwise, it then checks to see if the user's age is more than 20. If so, it responds that the
user is pretty young; otherwise (any age less than or equal to 20), it responds that the user is just a baby.

Gourd, Kiremire, O'Neal 12 Last modified: 21 Oct 2015

Note that we can nest an if-else statement inside of another if-else statement to provide more than two
alternatives or paths. Try to represent the program above in pseudocode in the space below:

The if statement is similar to the if-else statement except that it does not include an else block. That is, it
only specifies what to do if the Boolean expression is true. Here's a flowchart for an if statement:

If statements are generally used by programmers to allow their programs to detect and handle conditions
that require special or additional processing. This is in contrast to if-else statements, which can be
viewed as selecting between two (or more) equal choices.

Gourd, Kiremire, O'Neal 13 Last modified: 21 Oct 2015

Boolean
expression

Statements to be
executed if

expression is true

Repetition
Repetition is the name given to the class of control constructs that allow computer programs to repeat a
task over and over. This is useful, particularly when considering the idea of solving problems by
decomposing them into repeatable steps. There are two primary forms of repetition: iteration and
recursion.

Scratch supports iteration in two main forms: the repeat loop and the forever loop. The repeat loop has
two forms: repeat-until and repeat-n (where n is some fixed or known number of times). The repeat-
until loop is condition-based; that is, it executes the statements of the loop until a condition becomes
true. The repeat-n loop is count-based; that is, it executes the statements of the loop n times.

Here's a flowchart of the repeat-until loop:

The Boolean expression is first evaluated. If it evaluates to false, the loop statements are executed;
otherwise, the loop halts. Here is an example:

This program asks the user to enter a positive number or -1. If a positive number is entered, it is added
to a running total. If -1 is entered, the program displays the total and halts. The repeat-until loop is used
here to repeat the process of asking the user for input until the value entered is less than 0. It is
interesting to note that although the program instructs users to enter -1 to quit, the condition that controls

Gourd, Kiremire, O'Neal 14 Last modified: 21 Oct 2015

Boolean
expression Loop statements

false

true

the loop is actually num < 0 (which will be false for any negative number). Thus, the loop will
actually terminate whenever the user enters any number less than zero (e.g., -5).

Try to represent the program above in pseudocode in the space below:

The repeat-n loop executes the loop statements a fixed (or known) number of times. Here's a flowchart
of the repeat-n loop:

Although the programmer does not have access to a variable that counts the specified number of times
(shown as n in the figure above), the process works in this manner. A counter is initially set to 1. A
Boolean expression is then evaluated that checks to see if that counter is less than or equal to the target
value (e.g., 10). If so, the loop statements execute. Once the loop statements have completed, the
counter is incremented, and the expression is reevaluated.

Gourd, Kiremire, O'Neal 15 Last modified: 21 Oct 2015

n <= target Loop statements
true

false

change n by 1

set n to 1

Here is an example:

This program asks the user to enter five numbers. Each time, the number is added to a running total.
After all five numbers have been entered, the total is displayed.

The forever loop also has two forms: forever and forever-if. The forever loop executes the statements of
the loop forever. Well, it's not technically forever, since we can click the stop button to halt all scripts at
any time. The forever-if loop is condition-based (like the repeat-until loop), and executes the statements
of the loop if a condition is true. Note that the forever-if loop also runs forever (until the stop button is
clicked). the difference is that the loop statements are only executed if the condition is true.

Here is a flowchart of the forever-if loop:

This loop construct is often used to perform real time checking of sprites and execute statements if, for
example, the sprite is at a certain position on the stage. Another example is to constantly check the
value of a variable that is changed by some other sprite. In this way, a sprite can monitor a variable, and
when changed to an appropriate value, perform some action.

Gourd, Kiremire, O'Neal 16 Last modified: 21 Oct 2015

Boolean
expression Loop statements

true

false

Lastly, here is a flowchart of the forever loop:

Pretty straightforward...

Note that any program written using a repeat-n loop can be rewritten as a repeat-until loop. Take, for
example the repeat-n loop shown earlier:

Here it is, rewritten using a repeat-until loop:

The only difference is that, in the repeat-until loop, the programmer must keep track of (and modify) the
counter each time the loop statements execute. In the repeat-n loop, Scratch automatically takes care of
this.

Is the opposite true? That is, can every program that uses a repeat-until loop be rewritten using a
repeat-n loop? The answer is no. A repeat-n loop simply loops a fixed or known number of times. A

Gourd, Kiremire, O'Neal 17 Last modified: 21 Oct 2015

Loop statements

repeat-until loop repeats until some condition is true. That condition could be, for example, when the
user inputs -1 to terminate. The idea of expressing a condition that represents a sentinel value in a
manner that requires knowing how many times the loop statements will execute is nonsensical. There is
no way to tell how many times the loop statements will execute until the user inputs -1. It could be the
very first time (or the 10,000th). Because repeat-n loops can always be replaced with repeat-until loops,
but not all repeat-until loops can be replaced with repeat-n loops, we say that the repeat-until loop is
more general than the repeat-n loop.

Before leaving the topic of iteration, we should say a few words about the idea of nested loops. Two
loops are nested when one loop appears within the body of another loop. Since there are no restrictions
as to what statements can appear within the body of a loop, any of the repeat or forever loops can
certainly appear within the body of another. Nesting of loops is quite common, and in fact may be
carried out to an arbitrary depth. However, to keep the logic of a program from becoming too hard to
follow, programmers try to limit nesting depths to no more than three or four levels deep.

The following script presents a compact little program for displaying the multiplication table. This
program consists of two nested repeat-until loops. The loop variable of the outer loop is i, and the loop
variable for the inner loop is j. Both of these loops count from one to nine:

The program’s output is of the form i * j = x, where i and j represent the values of the respective
variables, and x is their product. Notice that j runs through its entire range, from 1 to 9, before i is
incremented by 1. This behavior is easy to understand when you think about the structure of the
program.

Let’s look at the outer loop. What does it do? Well, first i is initialized to 0, it is then compared to 9,
and since it is not equal, the first iteration of the loop commences. The first statement of the loop
increments i and then initializes j to 0. The next statement is another repeat-until loop. In order for the
first iteration of the outer loop to complete, the program must execute this inner loop to completion.

The process repeats until all 81 entries in the multiplication table, from 1 1 to 9 9, are computed and
displayed.

Gourd, Kiremire, O'Neal 18 Last modified: 21 Oct 2015

We conclude this section with the following program:

This program displays the lyrics to the song, “99 Bottles of Beer on the Wall.” As you most likely know,
the song begins as follows:

99 bottles of beer on the wall.
99 bottles of beer.
Take one down, pass it around.
98 bottles of beer on the wall.

98 bottles of beer on the wall.
98 bottles of beer.
Take one down, pass it around.
97 bottles of beer on the wall.

It continues in this manner, with one less bottle in each verse, until it finally runs out of beer. An
interesting feature of the program is that it decrements bottles in the middle of the loop rather than at
the end. You should trace through the program with a few bottles to convince yourself that it does work
properly. One thing you will probably notice as you do so is that when the program gets down to one
beer, it reports that as “1 bottles of beer on the wall.” While this lack of grammatical correctness might
not seem like such a big deal, especially after 98 beers, we can correct it easily with an if statement.

Functions
This section is concerned with creating and using function subprograms. A subprogram is a program
within a program. Recall an earlier lesson on representing algorithms as to-do lists. One algorithm
represented the steps necessary to get to class. One of those steps was eat breakfast. We noted how we
could zoom in to that step and identify the sub-steps necessary to complete the eat breakfast step.
Control flow shifted from the main to-do list to the eat breakfast to-do list when the eat breakfast step
was encountered, and then returned to the main to-do list at the point where it left earlier. We can
consider the eat breakfast to-do list as a subprogram.

Very few real programs are written as one long piece of code. Instead, traditional imperative programs
generally consist of large numbers of relatively simple subprograms that work together to accomplish
some complex task. While it is theoretically possible to write large programs without the use of
subprograms, as a practical matter any significant program must be decomposed into manageable pieces
if humans are to write and maintain it.

Gourd, Kiremire, O'Neal 19 Last modified: 21 Oct 2015

Subprograms make the construction of software libraries possible. A software library is a collection of
subprograms, or routines as they are sometimes called, for solving common problems that have been
written, tested, and debugged. Most programming languages come with extensive libraries for
performing mathematical and text string operations and for building graphical user interfaces. These
languages allow programmers to include library routines in their code. Using subprograms from the
library speeds up the software development process and results in a more reliable finished product.

When a subprogram is invoked, or called, from within a program, the calling program pauses
temporarily so that the called subprogram can carry out its actions. Eventually, the called subprogram
will complete its task and control will once again return to the caller. When this occurs, the calling
program wakes up and resumes its execution from the point it was at when the call took place.

Subprograms can call other subprograms (including copies of themselves as we will see later). These
subprograms can, in turn, call other subprograms. This chain of subprogram invocations can extend to
an arbitrary depth as long as the bottom of the chain is eventually reached. It is necessary that infinite
calling sequences be avoided, since each subprogram in the chain of subprogram invocations must
eventually complete its task and return control to the program that called it.

In Scratch, we define subprograms as broadcasts. That is, a sprite can broadcast a message that can be
received by another sprite (or even the same sprite). We can think of this as calling a subprogram.
When receiving a broadcast, we can specify the script (subprogram) associated with it. Here is a simple
example of a subprogram that computes the sum of two numbers stored in the variables i and j:

Gourd, Kiremire, O'Neal 20 Last modified: 21 Oct 2015

The left side shows the subprogram defined by receiving the broadcast sum. The right side shows the
broadcast (or the subprogram call). Assuming that the variables i and j have been declared and given
numeric values, then the sum subprogram would add the two variables together and store the result to
the variable sum. Here is an example when i is 37 and j is 71 (note that the sum subprogram has been
called by being broadcasted):

Recursion
This section is concerned with the topic of recursion. Recursion is a type of repetition that is
implemented when a subprogram calls itself. When a recursive call takes place, control is passed to
what appears to be a brand new copy of the subprogram. This copy of the subprogram may, in turn, call
another copy of the subprogram. That copy may call another copy, and so on. Eventually, these
recursive calls must terminate and return control to the original calling program.

Gourd, Kiremire, O'Neal 21 Last modified: 21 Oct 2015

Recall the “99 Bottles of Beer on the Wall” program that was shown earlier. It illustrated an iterative
method of singing the song. Here's an example of the same program implemented using recursion:

At first glance you might think that this program is an identical copy of the program shown earlier.
There are, however, two major differences between the two. First, instead of a repeat-until loop, this
program has an if statement. Also, just before the end of the if statement, the same subprogram (beers!)
is called via a broadcast. This is the recursive call!

Prior to that, note that the value of the variable bottles is decremented by 1 (i.e., changed by -1).
When control enters the subprogram, the value is checked to see if it is greater than 0. This ensures that,
so long as bottles is decremented each time the subprogram executes, it will eventually reach 0.
When this occurs, it will cause the Boolean expression in the if statement to evaluate to false, thereby
not executing its block (and calling itself again) and stopping the recursion.

One way to envision recursion is to think of it as a spiral. Each time a subprogram calls itself, we
descend down a level of the spiral until we eventually reach the bottom. At that point, execution begins
to unwind as the subprogram calls complete and we retrace our path back up through the various levels
until finally arriving at the top level where execution began.

The recursive program above illustrates what is called tail recursion, because the recursive call is the
last action taken by the subprogram. In tail recursion, there is no work to be done during the unwinding
process because it was all done on the way down the spiral. In Scratch, this is the only way of
implementing recursion. As we will find out later, other programming languages permit other forms of
recursion, where the recursive call can occur before other statements.

Many students, upon learning how recursion works, worry that programs that employ this form of
repetition might be very inefficient in terms of their utilization of machine resources. After all, you have
all of those copies of the subprogram hanging around. The good news is that recursion is not nearly as
expensive as you probably think. For one thing, only one copy of the actual subprogram code is needed.
All that is reproduced during each call is the execution environment, the variables and whatnot that are
used by that version of the subprogram. While it is true that recursion generally involves more overhead
than iteration, recursive calls are really no more expensive than any other kind of function call. In fact,

Gourd, Kiremire, O'Neal 22 Last modified: 21 Oct 2015

some optimizing compilers convert tail recursion into iteration so there is often no additional expense in
using that form of recursion at all.

Aside from the efficiency issue, you may be wondering why programming languages would support
recursion. After all, whenever the need for repetition arises the programmer could always use one of the
iteration constructs. The reasons for supporting both recursion and iteration are the same as those for
supporting two types of selection statements (if and if-else) as well as two types of iteration constructs
(repeat and forever): clarity and convenience. Some problems are simply easier to solve using recursion
than iteration. For these types of problems, a recursive solution is often more compact and easier to read
than an iterative one.

Gourd, Kiremire, O'Neal 23 Last modified: 21 Oct 2015

