
The Science of Computing I Living with Cyber

Lesson 4: Introduction to Data Structures Pillar: Data Structures

The need for data structures
The algorithms we design to solve problems rarely do so without requiring some sort of input and
producing some sort of output. In the process, our algorithms do something with the inputs (e.g.,
number crunching, processing, and so on). That is, algorithms typically manipulate the inputs in some
way. Think about what that means. Where is the information? What does it look like? How is it
accessed? How is it manipulated? Where does it go? We generally refer to the inputs being processed
and the output(s) being generated as data.

Definition: Data is a term given to pieces of information that can be represented, stored, or
manipulated using a computer. Often, combining data provides meaning (i.e., information).

Although data is useful and necessary, it is not yet meaningful. The idea is that our algorithms will
process this data and produce some sort of output (or result). In the process, meaning is given to the
data. We call this information.

Data structures
Data structures have to do with arranging or organizing data in some way. The memory capacity in
today's computers is very large. Within the computer, data is stored in different memory locations.
Often, the many pieces of data that our algorithms are dealing with are related in some way.
Consequently, there is a need to have this data grouped in some way in memory. This grouping makes
manipulation of that data much easier. Think about sorting a list of numbers. It would be much more
difficult if the numbers were located randomly in memory. Somehow, we would need to know where
each value is located, and that could technically be anywhere! Perhaps it would speed things up if each
value was located in consecutive memory locations (i.e., next to each other in memory). We would then
only need to know where the first value is located and the total number of values stored.

Data structures allow a programmer to arrange pieces of information (data) in a way that makes sense
and allows the computer to manipulate the data easily for the programmer's task. Many times this data
is made up of multiple instances of similar pieces of data, and other times it involves different kinds of
data which are related. For example, a word (or a bunch of letters strung together) is made up of
multiple pieces of similar data kept together in a specific order. In the case of a word, the letters of the
alphabet are the pieces of data, and they have to be kept together in a specific order for it to make sense.
Another example is a class roster which is made up of different entries in a specific order corresponding
to each student in the class. Each entry is made up of dissimilar data such as the name and the grade on
exam 1 of a student.

Definition: A data structure is a way of organizing data in a computer so that it can be used efficiently.

Array
One of the most commonly used data structures is called the array. We will see that many concepts in
computer science, and particularly in data structures, are derived from real life examples and arrays are
not an exception. Arrays are comparable to a numbered list such as a grocery list, a class roster, or a set
of numbered drawers. They are used to store multiple instances of anything, as long as they are all of
the same kind (i.e., all numbers, all letters, all images, all books, etc). Imagine these things being in

Gourd, Kiremire 1 Last modified: 29 Oct 2015

some sort of order (i.e., we have a first thing, a last thing, and some number of things in between). The
members of (or entries in) the array are called elements.

Definition: An array is a collection of similar pieces of data stored in contiguous memory locations.
Contiguous memory locations means that the data is stored in memory locations that are next to each
other.

The order in which elements are stored in an array is important. This is because very often a
programmer needs to access a specific element of an array, and in order to do that, its position relative to
the first element of the array must be known. The position of an element is also referred to as its
address, and the relative address (how far away from the first element it is) is called its index.

In the Scratch programming language, arrays are implemented using a list. The indices (relative
positions) of lists in Scratch begin at index 1 and continue through the length of the list (i.e., index n for
a list of n elements). This means that if you have a list of four elements, the indices begin at 1 and
continue through 4 (i.e., the first element will have an index of 1, and the last element will have an index
of 4). You would run into problems if you tried to access the element at index 5, because the program is
only aware of elements 1 through 4. It is as if you had a list of four students, and someone asked you
who the fifth student was. Similarly, if you had a list of 100 elements in Scratch, its indices would start
at 1 and end at 100. The program would be unable to access an element at index 101 (or even index 0 or
-1) because such an element does not exist.

Activity 1: Creating and populating an array

In this activity, you will create a list of 20 numbers in Scratch. You will then apply the sequential
search from a previous lesson to find a specific number in the list.

Gourd, Kiremire 2 Last modified: 29 Oct 2015

item 1 ...item 2 item 3 item 4 item 5 item 6 item n-1 item n

Contiguous memory locations

Creating a list
To create the list, select make a list from the variables blocks group:

This should bring up a pop-up menu which you can use to name the list. For now, let's call this list
array:

After clicking OK, you should see two changes to the Scratch interface. First, there should be a
component in the stage of the Scratch interface. The component has the name of the list you just
created, any information that is stored in the list (which is currently empty), and the length of the list
(which is currently 0):

Gourd, Kiremire 3 Last modified: 29 Oct 2015

The second effect of creating this list is that there are now more puzzle pieces in the variables blocks
group. These puzzle pieces allow us to do a lot of things with our list; for example, we can add values
to and remove values from the list. We can even delete the entire list.

Populating a list with random numbers
Let's populate the list with 20 random numbers. While it is possible (albeit tedious) to populate the list
by adding each value individually using add thing to array, we are going to create a short script using
other puzzle pieces to make this population process automated.

Because this population process calls for a specific task (addition of an item to the list) to be repeated
over and over again, let's use a repeat-n construct from the control blocks group (as well as the add
thing to array instruction from the variables blocks group). Because our task is going to be done 20
times (in order to fill the list with 20 values), we change the value in the repetition block to 20:

Now what “thing” will we be adding to the array? We want to add 20 randomly selected numbers to the
list. We find the appropriate puzzle piece for selecting a random number under the operators blocks

Gourd, Kiremire 4 Last modified: 29 Oct 2015

group. This puzzle piece is used to generate a random number whose value is between the two
arguments (which are 1 and 10 by default).

Drag this piece and place it in the “thing” argument position of add thing to array that is already in the
Scripts area. Edit its arguments such that it will pick a random number between 1 and 100.

When you click the repeat block, the script will be executed. This will fill the array with 20 random
numbers (from 1 to 100). Feel free to resize the list so that you can see more of the numbers stored in it
at once:

Gourd, Kiremire 5 Last modified: 29 Oct 2015

You have now created a list (which we called array) and filled it with 20 random numbers. If any of the
following activities require a list filled with random numbers, you can easily refer to the above steps
and create one. In fact, the rest of the activities in this lesson will require a list filled with numbers. If
you require a larger or smaller array, its just a matter of changing the value in the repeat block. If you
require values in a different range (perhaps numbers between 100 and 1000), its just a matter of
changing the values in the pick random block.

Note that if you continue to click on the repeat-n block, more values will be added to the list (i.e., it
will keep growing). To reset the list and add 20 fresh values, clear it first by modifying your script as
follows:

Note that the script above can add duplicate values to the list. How could it be modified to ensure that
the list only has unique values? A possible solution is:

Gourd, Kiremire 6 Last modified: 29 Oct 2015

There are several changes. The first is that the repeat-n loop has been changed to a repeat-until. This
is because of the if statement inside the loop. If a duplicate value is found (via the not array contains
num block) then it is not added to the list. It is possible that a duplicate value is selected that does not
get added to the list and takes up one of the 20 iterations of the original repeat-n loop. This could
result in the list having less than 20 values. To deal with this, we repeat the loop statements until the
length of the list is 20 (i.e., 20 unique values have been added to the list).

Another change is that the random number is stored in the variable num. This is because we need to
access the random number up to two times (first to check if it is already in the list, and second to add it
to the list if it is not a duplicate). Suppose that the Boolean expression were instead, not array
contains pick random 1 to 100. If the result of this expression is true (i.e., the list does not contain the
random number), then an add pick random 1 to 100 to array block (as in the first script) would
simply add a different random number to the list. To ensure that the one checked in the Boolean
expression is the same as the one added in the true part of the if statement, we store the random number
to the variable num and use it in both blocks.

Now that we have an array populated with random values, we can implement the sequential search to
find the largest value in the array!

Activity 2: Sequential search of the largest value in an array

This activity involves implementing a sequential search on the list that was created in the first activity.
We will use the sequential search to find the largest value in the list. We need to use our knowledge of
the sequential search algorithm to implement it using the tools available to us in Scratch.

Just to jog your memory, the sequential search algorithm begins by assuming that the largest value is the
value stored in the first position of the list. We then check through every position, one by one, to see if
there is a value greater than what is currently stored as largest. If a larger value is found, then the
largest is replaced with the value in the current position. Otherwise, we just move on to the next
position. This process is repeated until the end of the list is reached.

The first thing to do is to create a variable called largest and assign the value in the first position of the
list to it. Create the variable in the variables blocks group:

Gourd, Kiremire 7 Last modified: 29 Oct 2015

You should then be presented with a window in which you can type in the variable name (largest in this
case):

At this point, a component identifying the new variable should be in the upper-left of the stage. It is
initialized with a default value of 0:

There are also new puzzle pieces under the variables blocks group that allow you to set, change, show,
and hide largest.

Gourd, Kiremire 8 Last modified: 29 Oct 2015

We now need to store the value in the first position of array to largest. To set the value of a variable,
we use the set largest to 0 block in the variables blocks group. Drag it to the scripts area and combine
it with the item 1 of array block. This way, the value stored in position 1 of the list will be stored in
largest:

When this puzzle piece is clicked, the value of largest shown in the stage should change from 0 to
whatever value happens to be in the first position of your list (32 in the following example):

Now that we have initialized largest, we need to go through each value in the list and compare it with
the variable largest. This sounds like we'll need the repeat-n block from the control blocks group (to
do the comparison 20 times: one comparison for each of the values in the array). Technically, we really
only need to do the comparison 19 times: one comparison for each of the remaining values in the array).
We will also need the greater than block from the operators blocks group (to determine if a value from
the list is greater than largest) and the if block from the control blocks group (to selectively update
largest if a larger value is found):

Gourd, Kiremire 9 Last modified: 29 Oct 2015

Recall that the sequential search algorithm dictates that if the value we are comparing with in the list is
greater than largest, then we change the value of largest to store the current value in the list. Otherwise
we keep on comparing with the remaining values in the list.

To compare largest with individual elements in array, we will need to know the indices of each of the
values in the array. That is, we will need to start with the second index (why not the first?), compare it
with largest, go to the third, and so on. So we will need another variable in our algorithm which will
just store the index (or position) of whichever value we happen to be comparing largest with at the
time. Let's call this variable counter. Create it in the same way that you created largest.

You'll notice that the set, change, show, and hide blocks in the variables blocks group now have drop
down menus in them which you can click to change between all the different variables that you have
created. At this point, the drop down menu has just two variables: counter and largest:

We can now use counter to refer to specific elements in the list. For example, we already have a block
that sets largest to item 1 of array. We can use the variable counter instead of explicitly using the
number 1. The benefit of using a variable instead of an explicit number is that a variable can change at
any point in our algorithm.

Gourd, Kiremire 10 Last modified: 29 Oct 2015

Start the sequential search algorithm as follows:

So far, we've initialized largest to the first value in the array, initialized counter to 1, setup the
algorithm to repeat some number of times a comparison (undefined so far).

The next step is to tune the repeat-n construct to repeat the blocks in the loop 20 times (or the same
number of times as there are items in the array). We will also need to setup the Boolean expression so
that it compares the current value in the array (at the counter) with largest:

Since we want to compare largest to every item in the array (there are exactly length of array of
them!), we repeat length of array times. Each time we do so, we compare the current item in the list
(item counter of array) with largest.

There are only two more things left to do: first, if we have found a larger value in the list, then we must
update largest to reflect this; second, we must increment counter at the end of each repetition:

Gourd, Kiremire 11 Last modified: 29 Oct 2015

Note that the set largest to item counter of array in the loop will only be executed if item counter of
array is greater than largest. This is because that particular block is within the if statement.
Statements within the if block are only executed when the if block Boolean expression (which is item
counter of array > largest in this case) is true. If the if block Boolean expression is false, then all the
puzzle pieces within the if block are skipped.

Note where the increment of counter (via the change counter by 1 block) is placed in the script. We
want counter to change at the end of every loop (and not just when the if block is executed and a larger
value in the list has been found). This means we need to put it within the repeat-n block, but outside of
the if block.

The sequential search algorithm is now complete. If you run the program (by clicking the top puzzle
piece), it should execute and change the values of largest and counter. At the end of its execution,
largest should have the value of the largest item in the list, and counter should be 21 (why 21 and not
20?). The figures below shows what the stage looks like before and after you execute the program:

Did you know?

While it is technically referred to as a list in the Scratch programming language, there is a distinction
between a list and an array in other programming languages that will become more apparent later on.
For our purposes right now, a list in Scratch behaves in a similar manner to a traditional array, and the
terms will be used interchangeably for now.

Value vs. index
The sequential search is an algorithm that has very many applications. With just a few adjustments to
the algorithm, we can search for a specific number as opposed to searching for the largest or smallest
number. It is an algorithm that computer scientists often make use of in one form or another.

The distinction between a value and its index is one that must be emphasized. In this context, a value
refers to a piece of data stored in an array, and its index is the position in the array where that value is
stored. The index represents where an element is, and the value represents what the element is. While

Gourd, Kiremire 12 Last modified: 29 Oct 2015

the two are related, each of them will be of different importance to us depending on the scenario we are
trying to solve. For example, if you misplaced your favorite jacket at home, its location would be more
important than its value (i.e., its index would be more important than the fact that it is a jacket). In
contrast, when you get feedback on a test you did in class, the value of your score is more important.
While dealing with lists (and later on with arrays), it is important to understand the distinction between
index and value.

One category of algorithms that we have already covered and relies heavily on the distinction between
index and value is sorting. Our next activity will involve sorting an array of randomly assigned values.
More specifically, we will implement the selection sort to order the list of values.

Activity 3: Selection sort of an array

For this activity, you will make use of the script that randomly populates a list with unique values from
1 to 100. Here it is again for reference:

Recall that this script requires a list to be declared first (called array above).

Now we will implement the selection sort. First, let's look back at the pseudocode for the algorithm:
 1: n ← length of the list
 2: for i ← 1..n-1
 3: minPosition ← i
 4: for j ← i+1..n
 5: if item at j < item at minPosition
 6: then
 7: minPosition ← j
 8: end
 9: next
10: swap items at i and minPosition
11: next

The selection sort works by building a sorted list from left-to-right. Initially, the smallest value is
located in the list and swapped with the first item in the list. The sort repeats this process with the next
unsorted element (i.e., the first item in the unsorted portion of the list). Each iteration, a minPosition is
updated that reflects the position (or index) of the smallest value in the list so far. Once the entire list
has been searched through, a swap is made (swapping this minimum value with the first value in the
unsorted portion of the list).

Gourd, Kiremire 13 Last modified: 29 Oct 2015

Here is the algorithm in Scratch:

Note that the list is called values in the script above; however, you can call it what you want. Let's
break the algorithm down, step-by-step. The first statement is pretty evident and is easily translated to
Scratch blocks:

 1: n ← length of the list

Gourd, Kiremire 14 Last modified: 29 Oct 2015

The selection sort makes use of two loops, one inside the other. The outer loop controls the number of
passes made through the list, each time placing the next smallest value in the list. The inner loop finds
the next smallest value by comparing each value in the list to the current minimum.

 2: for i ← 1..n-1
 3: minPosition ← i
 4: for j ← i+1..n
 5: if item at j < item at minPosition
 6: then
 7: minPosition ← j
 8: end
 9: next
10: swap items at i and minPosition
11: next

Since Scratch doesn't have a for-next loop, we have to use a repetition construct that can function in a
similar way. A for-next loop is similar to a repeat-n loop; however, the repeat-n loop doesn't permit
us to know the number of the current iteration. We can use a repeat-until loop instead, as discussed in
a previous lesson. We can rewrite the selection sort so that it uses repeat-until loops instead of for-
next loops as follows:

 1: n ← length of the list
 2: i ← 1
 3: repeat
 4: minPosition ← i
 5: j ← i + 1
 6: repeat
 7: if item at j < item at minPosition
 8: then
 9: minPosition ← j
10: end
11: j ← j + 1
12: until j > n
13: swap items at i and minPosition
14: i ← i + 1
15: until i = n

The outer loop, for i ← 1..n-1, in the original pseudocode is replaced with the following:
i ← 1
repeat

...
i ← i + 1

until i = n

The for loop internally initializes i to 1 and (also) internally increments it by 1 at the end of the loop
statements. By switching to a repeat-until, however, we must manually initialize i and increment it at
the end of the loop statements. In addition, we must specify the exit condition that breaks out of the
loop. Since we increment i at the end of the loop statements and we want the loop statements to execute
through i = n-1, we can then set the exit condition to i = n. So when i is equal to n, we will break out of
the loop.

Gourd, Kiremire 15 Last modified: 29 Oct 2015

Step through the new pseudocode and convince yourself that the loop statements are executed the same
number of times as the original pseudocode. Suppose that n=10. In the original pseudocode, the loop
statements are executed so long as i=1..n-1, or 9 times. In the revised pseudocode, the loop statements
are also executed 9 times.

The inner loop, for j ← i+1..n, in the original pseudocode is replaced with the following:
j ← i + 1
repeat

...
j ← j + 1

until j > n

The for loop internally initializes j to i+1 and (also) internally increments it by 1 at the end of the loop
statements. Again, we must now manually initialize j and increment it at the end of the loop statements.
We must also specify the exit condition that breaks out of the loop. Since we want the loop statements
to execute through j = n, we can then set the exit condition to j > n. So when j is equal to n+1, we will
break out of the loop.

Step through the new pseudocode and convince yourself that the loop statements are executed the same
number of times as the original pseudocode. Suppose that n=10 and i=5. In the original pseudocode,
the loop statements are executed 5 times. In the revised pseudocode, the loop statements are also
executed 5 times.

And now you see why the Scratch version of the algorithm utilizes repeat-until constructs:

Also note that variable initializations (above each repeat-until construct), and the variable increments
(at the end of each set of loop statements).

Gourd, Kiremire 16 Last modified: 29 Oct 2015

The statements in the inner loop are almost a direct translation of the pseudocode to Scratch blocks.
The only thing left to discuss is the swap: swap items at i and minPosition. There is no
swap block in Scratch (nor is there such an instruction in most programming languages). We must
therefore manually swap the two values in the list.

Swapping is typically done by declaring a temporary variable, assigning it one of the two values to be
swapped, and then performing successive assignments. this is best described with an example.
Suppose that we wish to swap the values of two variables, num1 and num2. A simple algorithm to do
this is:

temp ← num1
num1 ← num2
num2 ← temp

The process begins with temp storing the value of num1. This now allows num1 to be changed to the
value stored in the variable num2. Finally, we can assign num1's old value (now stored in temp) to
num2, completing the swap.

The selection sort algorithm in Scratch makes use of this by storing the value at index i of the list in a
temporary variable (temp). It then replaces the item at index i of the list with the item at minPosition.
Finally, it replaces the item at index minPosition of the list with temp (the item that used to be at index
i of the list).

To test the entire algorithm, first create a list of 10 or 20 values and randomly populate it with unique
values using the appropriate script above. Then run the selection sort script and watch the list become
sorted! Here's some sample output of this:

Gourd, Kiremire 17 Last modified: 29 Oct 2015

Now that we have implemented the selection sort, we can sort any array of values! And now that we
have a sorted array, we can implement a more efficient search than the sequential search. Recall that
there exists a more efficient search that only works on sorted data: the binary search. Let's try to
implement it now in the next activity.

Gourd, Kiremire 18 Last modified: 29 Oct 2015

Activity 4: Binary search for a specific value in an array

For this activity, we assume that you have declared and randomly populated a list of values (called
array), and that you have also sorted this array using the selection sort implemented in the previous
activity.

Let's begin by recalling the pseudocode for the binary search as shown in a previous lesson:
 1: repeat
 2: n ← number of items in the current portion of the list
 3: mid ← floor(n / 2) + 1
 4: guess mid
 5: if response is HIGHER
 6: then
 7: discard the left half of the list
 8: else if response is LOWER
 9: then
10: discard the right half of the list
11: end
12: until guess is correct

Note that the repeat-until loop terminates when the guess is correct. This is because we tailored the
binary search to the number guessing game (which means that, eventually, the number will be found).
We need to generalize the algorithm so that it can work on an arbitrary list of values, whether the
specified value is found in it or not. Try to rewrite the algorithm so that it works for an arbitrary list:

Here, we store that value to search for in the variable num, and the length of the list in the variable n.
The search will continue so long as the list has at least one item (i.e., until its length n is 0). At each
iteration, its middle is calculated and stored in the variable mid. Recall that the middle is calculated as:

⌊ n2 ⌋+1

Gourd, Kiremire 19 Last modified: 29 Oct 2015

At this point, the algorithm compares the middle value with num. If the values are equal, an appropriate
message is displayed and the algorithm terminates. If num is greater than the middle value, then the left
half of the list is discarded (i.e., items 1 through mid are removed). If num is less than the middle value,
then the right half of the list is discarded (i.e., items mid through n are removed). Of course, the length
of the list is recomputed after one half is potentially discarded. If the value is never found, then at some
point the list will become empty (i.e., all values will be removed). The loop will then terminate, and an
appropriate “not found” message will be displayed.

Take a look at how we can implement this version of the binary search in Scratch:

We obtain the requested value num by prompting the user for it:

Gourd, Kiremire 20 Last modified: 29 Oct 2015

Note that Scratch has no floor function. To replicate this function, we simply calculate mid as n / 2 + 1,
and then check to see if mid is not a whole number (i.e., if it is not evenly divisible by 1). If so, then we
round down (well, we technically subtract 1 from mid and round up – which has the same effect):

If the specified value is found, the we display an appropriate message and terminate the script:

If the specified value is greater than the value at index mid in the array, we discard the left half of the
list. This is accomplished by repeatedly removing the first item in the list, mid times:

Gourd, Kiremire 21 Last modified: 29 Oct 2015

The delete 1 of array block removes item 1 of the array. Suppose the length of the list, n, is 10 and
mid is 6: floor(10 / 2) + 1 = 6. Further suppose that num is greater than the value at mid. So we discard
the left half of the list by repeatedly removing the first item in the list 6 times:

List Action Removal Count
1 2 3 4 5 6 7 8 9 10 original list
2 3 4 5 6 7 8 9 10 remove first value 1
3 4 5 6 7 8 9 10 remove first value 2
4 5 6 7 8 9 10 remove first value 3
5 6 7 8 9 10 remove first value 4
6 7 8 9 10 remove first value 5
7 8 9 10 remove first value 6

Notice how this process effectively discards the left half of the list.

If the specified value is less than the value at index mid in the array, we discard the right half of the list.
This is accomplished by repeatedly removing the last item in the list, n – mid + 1 times:

The delete last of array block removes item n (the last item) of the array. Again, suppose the length of
the list, n, is 10 and mid is 6. Further suppose that num is less than the value at mid. So we discard the
right half of the list by repeatedly removing the last item in the list 5 times (10 – 6 + 1 = 5):

List Action Removal Count
1 2 3 4 5 6 7 8 9 10 original list
1 2 3 4 5 6 7 8 9 remove last value 1
1 2 3 4 5 6 7 8 remove last value 2
1 2 3 4 5 6 7 remove last value 3
1 2 3 4 5 6 remove last value 4
1 2 3 4 5 remove last value 5

Notice how this process effectively discards the right half of the list.

All that's left to do is to recompute the length of the list and store that into the variable n – and that's it!
To test the entire algorithm, first create a list of 10 or 20 values and randomly populate it with unique
values using the appropriate script above. Then run the selection sort script to sort the list. Finally,
assign a desired value to num, and run the binary search script.

Gourd, Kiremire 22 Last modified: 29 Oct 2015

Here's some sample output of this for num=74 on the list 14 27 28 34 39 41 52 61 64 74:

Gourd, Kiremire 23 Last modified: 29 Oct 2015

And for num=50 on the same list:

And finally for num=28 on the same list:

Gourd, Kiremire 24 Last modified: 29 Oct 2015

